Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Run queries twice to test for idempotence #159

Merged
merged 4 commits into from
Dec 12, 2023
Merged
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
126 changes: 72 additions & 54 deletions apis/python/test/test_index.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,8 +9,9 @@
def test_flat_index(tmp_path):
uri = os.path.join(tmp_path, "array")
index = flat_index.create(uri=uri, dimensions=3, vector_type=np.dtype(np.uint8))
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {ind.MAX_UINT64} == set(result_i[0])
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {ind.MAX_UINT64} == set(result_i[0])
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Lets add a util function that runs x queries and asserts results to avoid duplication and make the code more readable.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thanks, updated:

(TileDB-Vector-Search) ~/repo/TileDB-Vector-Search/apis/python pytest test/test_index.py -s
================================================= test session starts =================================================
platform darwin -- Python 3.9.18, pytest-7.4.3, pluggy-1.3.0
rootdir: /Users/parismorgan/repo/TileDB-Vector-Search/apis/python
collected 2 items                                                                                                     

test/test_index.py ..

================================================== 2 passed in 3.33s ==================================================


update_vectors = np.empty([5], dtype=object)
update_vectors[0] = np.array([0, 0, 0], dtype=np.dtype(np.uint8))
Expand All @@ -19,39 +20,47 @@ def test_flat_index(tmp_path):
update_vectors[3] = np.array([3, 3, 3], dtype=np.dtype(np.uint8))
update_vectors[4] = np.array([4, 4, 4], dtype=np.dtype(np.uint8))
index.update_batch(vectors=update_vectors, external_ids=np.array([0, 1, 2, 3, 4]))
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))

index.delete_batch(external_ids=np.array([1, 3]))
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))

update_vectors = np.empty([2], dtype=object)
update_vectors[0] = np.array([1, 1, 1], dtype=np.dtype(np.uint8))
update_vectors[1] = np.array([3, 3, 3], dtype=np.dtype(np.uint8))
index.update_batch(vectors=update_vectors, external_ids=np.array([1, 3]))
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {1, 2, 3}.issubset(set(result_i[0]))

index.delete_batch(external_ids=np.array([1, 3]))
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(np.array([[2, 2, 2]], dtype=np.float32), k=3)
assert {0, 2, 4}.issubset(set(result_i[0]))


def test_ivf_flat_index(tmp_path):
Expand All @@ -60,10 +69,11 @@ def test_ivf_flat_index(tmp_path):
index = ivf_flat_index.create(
uri=uri, dimensions=3, vector_type=np.dtype(np.uint8), partitions=partitions
)
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {ind.MAX_UINT64} == set(result_i[0])
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {ind.MAX_UINT64} == set(result_i[0])

update_vectors = np.empty([5], dtype=object)
update_vectors[0] = np.array([0, 0, 0], dtype=np.dtype(np.uint8))
Expand All @@ -72,52 +82,60 @@ def test_ivf_flat_index(tmp_path):
update_vectors[3] = np.array([3, 3, 3], dtype=np.dtype(np.uint8))
update_vectors[4] = np.array([4, 4, 4], dtype=np.dtype(np.uint8))
index.update_batch(vectors=update_vectors, external_ids=np.array([0, 1, 2, 3, 4]))
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))

index.delete_batch(external_ids=np.array([1, 3]))
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))

update_vectors = np.empty([2], dtype=object)
update_vectors[0] = np.array([1, 1, 1], dtype=np.dtype(np.uint8))
update_vectors[1] = np.array([3, 3, 3], dtype=np.dtype(np.uint8))
index.update_batch(vectors=update_vectors, external_ids=np.array([1, 3]))
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {1, 2, 3}.issubset(set(result_i[0]))

index.delete_batch(external_ids=np.array([1, 3]))
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))

index = index.consolidate_updates()
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))
for _ in range(2):
result_d, result_i = index.query(
np.array([[2, 2, 2]], dtype=np.float32), k=3, nprobe=partitions
)
assert {0, 2, 4}.issubset(set(result_i[0]))
Loading