Skip to content

Commit

Permalink
添加数学笔记
Browse files Browse the repository at this point in the history
  • Loading branch information
870138612 committed Aug 8, 2024
1 parent 6a6179d commit feed70b
Showing 1 changed file with 14 additions and 8 deletions.
22 changes: 14 additions & 8 deletions src/note/1math.md
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ $$
### 数列极限

- 等比数列前$n$项的和$S_n=\begin{cases} na_1 &r=1\\ \frac{a_1(1-r^n)}{1-r} & r\not=1\end{cases}$.
- $\sqrt{ab} \le {\frac{a+b}{2}} \le\sqrt{\frac{a^2+b^2+c^2}{2}},(a,b\ge0)$.
- $\sqrt{ab} \le {\frac{a+b}{2}} \le\sqrt{\frac{a^2+b^2}{2}},(a,b\ge0)$.

### 一元函数微分学

Expand Down Expand Up @@ -93,13 +93,10 @@ $$
\arctan'x=\frac{1}{1+x^2}
$$
$$
\arccot 'x=-\frac{1}{1+x^2}
$$
$$
\sec'x=secx\cdot{tanx}
$$
$$
\csc'x=-cscx\cdot{cotx}
\cot'x=-cscx\cdot{cotx}
$$
$$
\ln'(x+\sqrt{x^2+1})=\frac{1}{\sqrt{x^2+1}}
Expand Down Expand Up @@ -137,10 +134,19 @@ $$
- 设$u=u(x)$,$v=v(x)$均$n$阶导,则

$$
(uv)^{(n)}=u^{(n)}v+
(uv)^{(n)}=u^{(n)}v+C_n^1u^{(n-1)}v'+C_n^2u^{(n-2)}v''+...+C_n^{n-1}u'v^{(n-1)}+uv^{(n)}
$$

### 一元函数微分学的应用-几何应用

$$
- 设函数$f(x)$二阶可导,在$x=x_0$处取得最大值,则有$f''(x_0)\le0$.
- 二阶可导点是拐点的必要条件:设$f''(x_0)$存在,且点$(x_0,f(x_0))$为曲线的拐点,则$f''(x_0)=0$.
- 二阶可导点是拐点的充分条件
- 在某点去心领域内二阶导数存在,在该点的左右两边$f''(x_0)$变号,则为拐点.
- $f(x)$在$x=x_0$的某邻域内三阶可导,$f''(x_0)=0$,$f'''(x_0)\not = 0$,则为拐点.
- 设$f(x)$在$x_0$处三阶导可导,且$f^{(m)}(x_0)=0(m=2,...,n-1)$,$f^{(n)}(x_0) \not = 0(n\ge3)$,则当$n$为奇数时,点$(x_0,f(x_0))$为曲线的拐点.

$$
- 设多项式$f(x)=(x-a)^ng(x)(n>1)$,且$g(a) \not = 0$,则当$n$为偶数时,$x=a$是$f(x)$的极值点,则当$n$为奇数时,$x=a$是$f(x)$的拐点.
- 设多项式$f(x)=(x-a_1)^{n_1}(x-a_2)^{n_2}...(x-a_k)^{n_k}$,其中$n_i$是正整数,$a_i$是实数,且互不相等,记$k_1$为$n_i=1$的个数,$k_2$为$n_i>1$且$n_i$为偶数的个数,$k_3$为$n_i>1$且$n_i$为奇数个数,则极值点的个数为$k_1+2k_2+k_3-1$,拐点个数为$k_1+2k_2+3k_3-2$.

### 一元函数微分学应用-中值定理、微分等式和微分不等式

0 comments on commit feed70b

Please sign in to comment.