Skip to content

Commit

Permalink
添加数学笔记
Browse files Browse the repository at this point in the history
  • Loading branch information
870138612 committed Aug 8, 2024
1 parent 816933e commit 6a6179d
Showing 1 changed file with 93 additions and 24 deletions.
117 changes: 93 additions & 24 deletions src/note/1math.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,74 +4,143 @@ icon: page
cover: /home/sky.jpg
---

### 泰勒公式
## 高等数学

### 数列极限与连续

- 若$\lim{f(x)}$存在,$\lim{g(x)}$不存在,则$\lim{[f(x)}\pm{g(x)}]$必不存在.
- 若$\lim{f(x)}$不存在,$\lim{g(x)}$不存在,则$\lim{[f(x)}\pm{g(x)}]$不一定存在.
- 若$\lim{f(x)}=A\not=0$,$\lim{f(x)g(x)}=A\lim{g(x)}$,即乘除法中非零因子可以先提出.



- 泰勒公式

$$
sinx = x - \frac{x^3}{6} + o(x^3)
\sin x = x -\frac{x^3}{6} + o(x^3)
$$
$$
arcsinx = x + \frac{x^3}{6} + o(x^3)
\arcsin x = x+\frac{x^3}{6}+o(x^3)
$$
$$
cosx = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^4)
\cos x =1-\frac{x^2}{2}+\frac{x^4}{24}+o(x^4)
$$
$$
tanx = x + \frac{x^3}{3} + o(x^3)
\tan x=x+\frac{x^3}{3}+o(x^3)
$$
$$
arctanx = x - \frac{x^3}{3} + o(x^3)
\arctan x=x-\frac{x^3}{3}+o(x^3)
$$
$$
ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)
\ln(1+x) =x-\frac{x^2}{2}+\frac{x^3}{3}+o(x^3)
$$
$$
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + o(x^3)
e ^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3)
$$
$$
(1+x)^a = 1 + ax + \frac{a(a-1)}{2!} x^2 + o(x^2)
(1+x)^a=1+ax+\frac{a(a-1)}{2!}x^2+o(x^2)
$$
$$
\frac{1}{1-x} = 1 + x + x^2 + x^3...
\frac{1}{1-x}=1+x+x^2+x^3...
$$
$$
\frac{1}{1+x} = 1 - x + x^2 - x^3...
\frac{1}{1+x}=1-x+x^2-x^3...
$$

### 导数公式
### 数列极限

- 等比数列前$n$项的和$S_n=\begin{cases} na_1 &r=1\\ \frac{a_1(1-r^n)}{1-r} & r\not=1\end{cases}$.
- $\sqrt{ab} \le {\frac{a+b}{2}} \le\sqrt{\frac{a^2+b^2+c^2}{2}},(a,b\ge0)$.

### 一元函数微分学

- 若$f(x)$是可导的偶函数,则$f'(x)$是奇函数.
- 若$f(x)$是可导的奇函数,则$f'(x)$是偶函数.
- 若$f(x)$是可导的周期为$T$的周期函数,则$f'(x)$是以周期为$T$的周期函数.

::: info 墙外抢救

- $f(x)=(x+1)(x-1)|(x+1)(x-1)(x-2)|$,判断不可导点.

- 让绝对值内的值等于0,求出对应的点,再计算绝对值外值等于0的点,若有重合则不属于不可导点,此点被抢救.

- 绝对值内$f(x)$为0的点:$x=-1$,$x=1$,$x=2$,在绝对值外$f(x)$为0的点$x=-1$,$x=1$,存在重合的$x=-1$,$x=1$,因此不可导点只有一个$x=2$.


:::

- 基本求导公式

$$
\sin'x=cosx
$$
$$
\cos'x=-sinx
$$
$$
sin'x = cosx
\tan'x=sec^2x
$$
$$
cos'x = -sinx
\cot'x=-csc^2x
$$
$$
tan'x = sec^2x
\arcsin'x=\frac{1}{\sqrt{1-x^2}}
$$
$$
cot'x = -csc^2x
\arccos'x=-\frac{1}{\sqrt{1-x^2}}
$$
$$
arcsin'x = \frac{1}{\sqrt{1-x^2}}
\arctan'x=\frac{1}{1+x^2}
$$
$$
arccos'x = -\frac{1}{\sqrt{1-x^2}}
\arccot 'x=-\frac{1}{1+x^2}
$$
$$
arctan'x = \frac{1}{1+x^2}
\sec'x=secx\cdot{tanx}
$$
$$
arccot'x = -\frac{1}{1+x^2}
\csc'x=-cscx\cdot{cotx}
$$
$$
sec'x = secx \cdot{tanx}
\ln'(x+\sqrt{x^2+1})=\frac{1}{\sqrt{x^2+1}}
$$
$$
csc'x = -cscx \cdot{cotx}
\ln'(x+\sqrt{x^2-1})=\frac{1}{\sqrt{x^2-1}}
$$

- 反函数的导数
- 设$y=f(x)$为单调,可导函数,且$f'(x)\not=0$,则存在反函数$x=\varphi(y)$,且$\frac{dx}{dy}=\frac{1}{\frac{dy}{dx}}$,即$\varphi'=\frac{1}{f'(x)}$.
- 记$f'(x)=y'_x$,$\varphi'(y)=x'_y$,则

$$
y''_{xx}=-\frac{x'_{yy}}{(x'_y)^3}
$$



- 参数方程确定的函数的导数
- 设函数$y=y(x)$由参数方程为$\begin{cases}x=\varphi(t)\\y=\psi(t) \end{cases}$确定,$t$是参数,$\varphi(t)$,$\psi(t)$均可导,$\varphi'(x)\not=0$则

$$
ln'(x + \sqrt{x^2+1}) = \frac{1}{\sqrt{x^2+1}}
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\varphi'(x)}{\varphi'(t)}
$$

- 若$\varphi$,$\psi$二阶均可导,$\varphi'(x)\not=0$则

$$
ln'(x + \sqrt{x^2-1}) = \frac{1}{\sqrt{x^2-1}}
\frac{d^2y}{dx^2}=\frac{d(\frac{dy}{dx})}{dx}=
\frac{d(\frac{dy}{dx})/dt}{dx/dt}=
\frac{\psi''(t)\varphi'(t)-\psi'(t)\varphi''(t)}{[\varphi'(t)]^3}
$$

- 莱布尼茨公式
- 设$u=u(x)$,$v=v(x)$均$n$阶导,则

$$
(uv)^{(n)}=u^{(n)}v+
$$


$$
$$

0 comments on commit 6a6179d

Please sign in to comment.