-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_SRRGAN.py
236 lines (190 loc) · 9.67 KB
/
train_SRRGAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
'''
@文件 :train_srgan.py
@说明 :训练SRGAN模型
@时间 :2021/03/02 11:37:33
@作者 :徐通
@版本 :1.0
'''
import torch.backends.cudnn as cudnn
import torch
from torch import nn
from torchvision.utils import make_grid
from torch.utils.tensorboard import SummaryWriter
from model_SRRGAN import Generator, Discriminator, TruncatedVGG19
from datasets import SRDataset
from utils import *
import time
# 数据集参数
data_folder = './data/' # 数据存放路径
crop_size = 96 # 高分辨率图像裁剪尺寸
scaling_factor = 4 # 放大比例
# 生成器模型参数(与SRResNet相同)
large_kernel_size_g = 9 # 第一层卷积和最后一层卷积的核大小
small_kernel_size_g = 3 # 中间层卷积的核大小
n_channels_g = 64 # 中间层通道数
n_blocks_g = 16 # 残差模块数量
srresnet_checkpoint = "./results/checkpoint_SRResNet_new.pth" # 预训练的SRResNet模型,用来初始化
# 判别器模型参数
kernel_size_d = 3 # 所有卷积模块的核大小
n_channels_d = 64 # 第1层卷积模块的通道数, 后续每隔1个模块通道数翻倍
n_blocks_d = 9 # 卷积模块数量
fc_size_d = 1024 # 全连接层连接数
# 学习参数
batch_size = 16 # 批大小
start_epoch = 1 # 迭代起始位置
epochs = 50 # 迭代轮数
checkpoint = None # SRGAN预训练模型, 如果没有则填None
workers = 4 # 加载数据线程数量
vgg19_i = 5 # VGG19网络第i个池化层
vgg19_j = 4 # VGG19网络第j个卷积层
beta = 0.0001 # 判别损失乘子
lr = 1e-4 # 学习率
# 设备参数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ngpu = 1 # 用来运行的gpu数量
cudnn.benchmark = True # 对卷积进行加速
writer = SummaryWriter() # 实时监控 使用命令 tensorboard --logdir runs 进行查看
def main():
"""
训练.
"""
start1 = time.perf_counter()
global checkpoint, start_epoch, writer
# 模型初始化
generator = Generator(large_kernel_size=large_kernel_size_g,
small_kernel_size=small_kernel_size_g,
n_channels=n_channels_g,
n_blocks=n_blocks_g,
scaling_factor=scaling_factor)
discriminator = Discriminator(kernel_size=kernel_size_d,
n_channels=n_channels_d,
n_blocks=n_blocks_d,
fc_size=fc_size_d)
# 初始化优化器
optimizer_g = torch.optim.Adam(params=filter(lambda p: p.requires_grad, generator.parameters()), lr=lr)
optimizer_d = torch.optim.Adam(params=filter(lambda p: p.requires_grad, discriminator.parameters()), lr=lr)
# 截断的VGG19网络用于计算损失函数
truncated_vgg19 = TruncatedVGG19(i=vgg19_i, j=vgg19_j)
truncated_vgg19.eval()
# 损失函数
content_loss_criterion = nn.MSELoss() # 内容损失
adversarial_loss_criterion = nn.BCEWithLogitsLoss() # 对抗损失
# 将数据移至默认设备
generator = generator.to(device)
discriminator = discriminator.to(device)
truncated_vgg19 = truncated_vgg19.to(device)
content_loss_criterion = content_loss_criterion.to(device)
adversarial_loss_criterion = adversarial_loss_criterion.to(device)
# 加载预训练模型
srresnetcheckpoint = torch.load(srresnet_checkpoint)
generator.net.load_state_dict(srresnetcheckpoint['model'])
if checkpoint is not None:
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
generator.load_state_dict(checkpoint['generator'])
discriminator.load_state_dict(checkpoint['discriminator'])
optimizer_g.load_state_dict(checkpoint['optimizer_g'])
optimizer_d.load_state_dict(checkpoint['optimizer_d'])
# 单机多GPU训练
if torch.cuda.is_available() and ngpu > 1:
generator = nn.DataParallel(generator, device_ids=list(range(ngpu)))
discriminator = nn.DataParallel(discriminator, device_ids=list(range(ngpu)))
# 定制化的dataloaders
train_dataset = SRDataset(data_folder, split='train',
crop_size=crop_size,
scaling_factor=scaling_factor,
lr_img_type='imagenet-norm',
hr_img_type='imagenet-norm')
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=workers,
pin_memory=True)
# 开始逐轮训练
for epoch in range(start_epoch, epochs + 1):
if epoch == int(epochs / 2): # 执行到一半时降低学习率
adjust_learning_rate(optimizer_g, 0.1)
adjust_learning_rate(optimizer_d, 0.1)
generator.train() # 开启训练模式:允许使用批样本归一化
discriminator.train()
losses_c = AverageMeter() # 内容损失
losses_a = AverageMeter() # 生成损失
losses_d = AverageMeter() # 判别损失
n_iter = len(train_loader)
# 按批处理
for i, (lr_imgs, hr_imgs) in enumerate(train_loader):
# 数据移至默认设备进行训练
lr_imgs = lr_imgs.to(device) # (batch_size (N), 3, 24, 24), imagenet-normed 格式
hr_imgs = hr_imgs.to(device) # (batch_size (N), 3, 96, 96), imagenet-normed 格式
# -----------------------1. 生成器更新----------------------------
# 生成
sr_imgs = generator(lr_imgs) # (N, 3, 96, 96), 范围在 [-1, 1]
sr_imgs = convert_image(
sr_imgs, source='[-1, 1]',
target='imagenet-norm') # (N, 3, 96, 96), imagenet-normed
# 计算 VGG 特征图
sr_imgs_in_vgg_space = truncated_vgg19(sr_imgs) # batchsize X 512 X 6 X 6
hr_imgs_in_vgg_space = truncated_vgg19(hr_imgs).detach() # batchsize X 512 X 6 X 6
# 计算内容损失
content_loss = content_loss_criterion(sr_imgs_in_vgg_space, hr_imgs_in_vgg_space)
# 计算生成损失
sr_discriminated = discriminator(sr_imgs) # (batch X 1)
adversarial_loss = adversarial_loss_criterion(
sr_discriminated, torch.ones_like(sr_discriminated)) # 生成器希望生成的图像能够完全迷惑判别器,因此它的预期所有图片真值为1
# 计算总的感知损失
perceptual_loss = content_loss + beta * adversarial_loss
# 后向传播.
optimizer_g.zero_grad()
perceptual_loss.backward()
# 更新生成器参数
optimizer_g.step()
# 记录损失值
losses_c.update(content_loss.item(), lr_imgs.size(0))
losses_a.update(adversarial_loss.item(), lr_imgs.size(0))
# -----------------------2. 判别器更新----------------------------
# 判别器判断
hr_discriminated = discriminator(hr_imgs)
sr_discriminated = discriminator(sr_imgs.detach())
# 二值交叉熵损失
adversarial_loss = adversarial_loss_criterion(sr_discriminated, torch.zeros_like(sr_discriminated)) + \
adversarial_loss_criterion(hr_discriminated, torch.ones_like(
hr_discriminated)) # 判别器希望能够准确的判断真假,因此凡是生成器生成的都设置为0,原始图像均设置为1
# 后向传播
optimizer_d.zero_grad()
adversarial_loss.backward()
# 更新判别器
optimizer_d.step()
# 记录损失
losses_d.update(adversarial_loss.item(), hr_imgs.size(0))
# 监控图像变化
if i == (n_iter - 2):
writer.add_image('SRGAN/epoch_' + str(epoch) + '_1',
make_grid(lr_imgs[:4, :3, :, :].cpu(), nrow=4, normalize=True), epoch)
writer.add_image('SRGAN/epoch_' + str(epoch) + '_2',
make_grid(sr_imgs[:4, :3, :, :].cpu(), nrow=4, normalize=True), epoch)
writer.add_image('SRGAN/epoch_' + str(epoch) + '_3',
make_grid(hr_imgs[:4, :3, :, :].cpu(), nrow=4, normalize=True), epoch)
# 打印结果
print("第 " + str(i) + " 个batch结束")
# 手动释放内存
del lr_imgs, hr_imgs, sr_imgs, hr_imgs_in_vgg_space, sr_imgs_in_vgg_space, hr_discriminated, sr_discriminated # 手工清除掉缓存
# 监控损失值变化
writer.add_scalar('SRGAN/Loss_c/内容损失', losses_c.val, epoch)
writer.add_scalar('SRGAN/Loss_a/生成损失', losses_a.val, epoch)
writer.add_scalar('SRGAN/Loss_d/判别损失', losses_d.val, epoch)
# 保存预训练模型
torch.save({
'epoch': epoch,
'generator': generator.state_dict(),
'discriminator': discriminator.state_dict(),
'optimizer_g': optimizer_g.state_dict(),
'optimizer_g': optimizer_g.state_dict(),
}, 'results/checkpoint_SRRGAN.pth')
# 训练结束关闭监控
end1 = time.perf_counter()
print("final is in : %.6s Seconds " % (end1 - start1))
writer.close()
if __name__ == '__main__':
main()