Skip to content

Commit

Permalink
add vllm-ascend usage doc & fix doc format
Browse files Browse the repository at this point in the history
Signed-off-by: Shanshan Shen <87969357+shen-shanshan@users.noreply.github.com>
  • Loading branch information
shen-shanshan committed Feb 12, 2025
1 parent c8b57d1 commit c71743c
Show file tree
Hide file tree
Showing 6 changed files with 281 additions and 69 deletions.
13 changes: 7 additions & 6 deletions docs/index.md
Original file line number Diff line number Diff line change
@@ -1,15 +1,16 @@
# Ascend plugin for vLLM

vLLM Ascend plugin (vllm-ascend) is a community maintained hardware plugin for running vLLM on the Ascend NPU.

This plugin is the recommended approach for supporting the Ascend backend within the vLLM community. It adheres to the principles outlined in the [[RFC]: Hardware pluggable](https://github.com/vllm-project/vllm/issues/11162), providing a hardware-pluggable interface that decouples the integration of the Ascend NPU with vLLM.
This plugin is the recommended approach for supporting the Ascend backend within the vLLM community. It adheres to the principles outlined in the [<u>[RFC]: Hardware pluggable</u>](https://github.com/vllm-project/vllm/issues/11162), providing a hardware-pluggable interface that decouples the integration of the Ascend NPU with vLLM.

By using vLLM Ascend plugin, popular open-source models, including Transformer-like, Mixture-of-Expert, Embedding, Multi-modal LLMs can run seamlessly on the Ascend NPU.

## Contents

- [Quick Start](./quick_start.md)
- [Installation](./installation.md)
- [<u>Quick Start</u>](./quick_start.md)
- [<u>Installation</u>](./installation.md)
- Usage
- [Running vLLM with Ascend](./usage/running_vllm_with_ascend.md)
- [Feature Support](./usage/feature_support.md)
- [Supported Models](./usage/supported_models.md)
- [<u>Running vLLM with Ascend</u>](./usage/running_vllm_with_ascend.md)
- [<u>Feature Support</u>](./usage/feature_support.md)
- [<u>Supported Models</u>](./usage/supported_models.md)
32 changes: 17 additions & 15 deletions docs/installation.md
Original file line number Diff line number Diff line change
@@ -1,20 +1,21 @@
# Installation

### 1. Dependencies
| Requirement | Supported version | Recommended version | Note |
| ------------ | ------- | ----------- | ----------- |
| Python | >= 3.9 | [3.10](https://www.python.org/downloads/) | Required for vllm |
| CANN | >= 8.0.RC2 | [8.0.RC3](https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.0.0.beta1) | Required for vllm-ascend and torch-npu |
| torch-npu | >= 2.4.0 | [2.5.1rc1](https://gitee.com/ascend/pytorch/releases/tag/v6.0.0.alpha001-pytorch2.5.1) | Required for vllm-ascend |
| torch | >= 2.4.0 | [2.5.1](https://github.com/pytorch/pytorch/releases/tag/v2.5.1) | Required for torch-npu and vllm required |
## 1. Dependencies

### 2. Prepare Ascend NPU environment
| Requirement | Supported version | Recommended version | Note |
| ----------- | ----------------- | ---------------------------------------------------------------------------------------------------- | ---------------------------------------- |
| Python | >= 3.9 | [3.10](https://www.python.org/downloads/) | Required for vllm |
| CANN | >= 8.0.RC2 | [8.0.RC3](https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.0.0.beta1) | Required for vllm-ascend and torch-npu |
| torch-npu | >= 2.4.0 | [2.5.1rc1](https://gitee.com/ascend/pytorch/releases/tag/v6.0.0.alpha001-pytorch2.5.1) | Required for vllm-ascend |
| torch | >= 2.4.0 | [2.5.1](https://github.com/pytorch/pytorch/releases/tag/v2.5.1) | Required for torch-npu and vllm required |

## 2. Prepare Ascend NPU environment

Below is a quick note to install recommended version software:

#### Containerized installation
### Containerized installation

You can use the [container image](https://hub.docker.com/r/ascendai/cann) directly with one line command:
You can use the [<u>container image</u>](https://hub.docker.com/r/ascendai/cann) directly with one line command:

```bash
docker run \
Expand All @@ -33,21 +34,22 @@ docker run \

You do not need to install `torch` and `torch_npu` manually, they will be automatically installed as `vllm-ascend` dependencies.

#### Manual installation
### Manual installation

Or follow the instructions provided in the [Ascend Installation Guide](https://ascend.github.io/docs/sources/ascend/quick_install.html) to set up the environment.
Or follow the instructions provided in the [<u>Ascend Installation Guide</u>](https://ascend.github.io/docs/sources/ascend/quick_install.html) to set up the environment.

### 3. Building
## 3. Building

#### Build Python package from source
### Build Python package from source

```bash
git clone https://github.com/vllm-project/vllm-ascend.git
cd vllm-ascend
pip install -e .
```

#### Build container image from source
### Build container image from source

```bash
git clone https://github.com/vllm-project/vllm-ascend.git
cd vllm-ascend
Expand Down
19 changes: 11 additions & 8 deletions docs/quick_start.md
Original file line number Diff line number Diff line change
@@ -1,17 +1,20 @@
# Quick Start

## Prerequisites

### Support Devices

- Atlas A2 Training series (Atlas 800T A2, Atlas 900 A2 PoD, Atlas 200T A2 Box16, Atlas 300T A2)
- Atlas 800I A2 Inference series (Atlas 800I A2)

### Dependencies
| Requirement | Supported version | Recommended version | Note |
|-------------|-------------------| ----------- |------------------------------------------|
| vLLM | main | main | Required for vllm-ascend |
| Python | >= 3.9 | [3.10](https://www.python.org/downloads/) | Required for vllm |
| CANN | >= 8.0.RC2 | [8.0.RC3](https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.0.0.beta1) | Required for vllm-ascend and torch-npu |
| torch-npu | >= 2.4.0 | [2.5.1rc1](https://gitee.com/ascend/pytorch/releases/tag/v6.0.0.alpha001-pytorch2.5.1) | Required for vllm-ascend |
| torch | >= 2.4.0 | [2.5.1](https://github.com/pytorch/pytorch/releases/tag/v2.5.1) | Required for torch-npu and vllm |

Find more about how to setup your environment in [here](docs/environment.md).
| Requirement | Supported version | Recommended version | Note |
| ----------- | ----------------- | ---------------------------------------------------------------------------------------------------- | -------------------------------------- |
| vLLM | main | main | Required for vllm-ascend |
| Python | >= 3.9 | [3.10](https://www.python.org/downloads/) | Required for vllm |
| CANN | >= 8.0.RC2 | [8.0.RC3](https://www.hiascend.com/developer/download/community/result?module=cann&cann=8.0.0.beta1) | Required for vllm-ascend and torch-npu |
| torch-npu | >= 2.4.0 | [2.5.1rc1](https://gitee.com/ascend/pytorch/releases/tag/v6.0.0.alpha001-pytorch2.5.1) | Required for vllm-ascend |
| torch | >= 2.4.0 | [2.5.1](https://github.com/pytorch/pytorch/releases/tag/v2.5.1) | Required for torch-npu and vllm |

Find more about how to setup your environment in [<u>here</u>](docs/environment.md).
34 changes: 17 additions & 17 deletions docs/usage/feature_support.md
Original file line number Diff line number Diff line change
@@ -1,19 +1,19 @@
# Feature Support

| Feature | Supported | Note |
|---------|-----------|------|
| Chunked Prefill || Plan in 2025 Q1 |
| Automatic Prefix Caching || Improve performance in 2025 Q1 |
| LoRA || Plan in 2025 Q1 |
| Prompt adapter |||
| Speculative decoding || Improve accuracy in 2025 Q1|
| Pooling || Plan in 2025 Q1 |
| Enc-dec || Plan in 2025 Q1 |
| Multi Modality | ✅ (LLaVA/Qwen2-vl/Qwen2-audio/internVL)| Add more model support in 2025 Q1 |
| LogProbs |||
| Prompt logProbs |||
| Async output |||
| Multi step scheduler |||
| Best of |||
| Beam search |||
| Guided Decoding || Plan in 2025 Q1 |
| Feature | Supported | Note |
| ------------------------ | --------------------------------------- | --------------------------------- |
| Chunked Prefill | | Plan in 2025 Q1 |
| Automatic Prefix Caching | | Improve performance in 2025 Q1 |
| LoRA | | Plan in 2025 Q1 |
| Prompt adapter | | |
| Speculative decoding | | Improve accuracy in 2025 Q1 |
| Pooling | | Plan in 2025 Q1 |
| Enc-dec | | Plan in 2025 Q1 |
| Multi Modality | ✅ (LLaVA/Qwen2-vl/Qwen2-audio/internVL) | Add more model support in 2025 Q1 |
| LogProbs | | |
| Prompt logProbs | | |
| Async output | | |
| Multi step scheduler | | |
| Best of | | |
| Beam search | | |
| Guided Decoding | | Plan in 2025 Q1 |
208 changes: 207 additions & 1 deletion docs/usage/running_vllm_with_ascend.md
Original file line number Diff line number Diff line change
@@ -1 +1,207 @@
# Running vLLM with Ascend
# Running vLLM with Ascend

## Preparation

### Check CANN Environment

Check your CANN environment:

```bash
cd /usr/local/Ascend/ascend-toolkit/latest/<arch>-linux # <arch>: aarch64 or x86_64
cat ascend_toolkit_install.info
```

The cann version should >= `8.0.RC2`, for example:

```bash
package_name=Ascend-cann-toolkit
version=8.0.RC3
```

### Check NPU Device

Check your available NPU chips:

```bash
npu-smi info
```

### Download Model

Install modelscope:

```bash
pip install modelscope
```

Download model with modelscope python sdk:

```python
# /root/models/model_download.py
from modelscope import snapshot_download

model_dir = snapshot_download('Qwen/Qwen2.5-7B-Instruct', cache_dir='/root/models')
```

Start downloading:

```bash
python model_download.py
```

To use models from ModelScope instead of HuggingFace Hub, set an environment variable:

```bash
export VLLM_USE_MODELSCOPE=True
```

## Offline Inference

### Install vllm and vllm-ascend

Install vllm and vllm-ascend directly with pip:

```bash
pip install vllm vllm-ascend
```

### Offline Inference on a Single NPU

Run the following script to execute offline inference on a single NPU:

```python
from vllm import LLM, SamplingParams

prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="Qwen/Qwen2.5-7B-Instruct")

outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

> [!TIP]
> You can use your local models for offline inference by replacing the value of `model` in `LLM()` with `path/to/model`, e.g. `/root/models/Qwen/Qwen2.5-7B-Instruct`.
> [!NOTE]
>
> - `temperature`: Float that controls the randomness of the sampling. Lower values make the model more deterministic, while higher values make the model more random.
> - `top_p`: Float that controls the cumulative probability of the top tokens to consider.
You can find more information about the sampling parameters [<u>here</u>](https://docs.vllm.ai/en/stable/api/inference_params.html#sampling-params).

If you run this script successfully, you can see the info shown below:

```bash
Processed prompts: 100%|███████████████████████| 4/4 [00:00<00:00, 4.10it/s, est. speed input: 22.56 toks/s, output: 65.62 toks/s]
Prompt: 'Hello, my name is', Generated text: ' Daniel and I am an 8th grade student at York Middle School. I'
Prompt: 'The president of the United States is', Generated text: ' Statesman A, and the vice president is Statesman B. If they are'
Prompt: 'The capital of France is', Generated text: ' the city of Paris. This is a fact that can be found in any geography'
Prompt: 'The future of AI is', Generated text: ' following you. As the technology advances, a new report from the Institute for the'
```

## Online Serving

### Run Docker Container

Build your docker image using `vllm-ascend/Dockerfile`:

```bash
docker build -t vllm-ascend:1.0 .
```

> [!NOTE]
> `.` is the dir of your Dockerfile.
Launch your container:

```bash
docker run \
--name vllm-ascend \
--device /dev/davinci0 \
--device /dev/davinci_manager \
--device /dev/devmm_svm \
--device /dev/hisi_hdc \
-v /usr/local/dcmi:/usr/local/dcmi \
-v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
-v /usr/local/Ascend/driver/lib64/:/usr/local/Ascend/driver/lib64/ \
-v /usr/local/Ascend/driver/version.info:/usr/local/Ascend/driver/version.info \
-v /etc/ascend_install.info:/etc/ascend_install.info \
-v /root/models:/root/models \
-it vllm-ascend bash
```

> [!TIP]
> To use your local model, you should mount your model dir to container, e.g. `-v /root/models:/root/models`.
> [!NOTE]
> You can set `davinci0 ~ davinci7` to specify a different NPU. Find more info about your device using `npu-smi info`.
### Online Serving on a Single NPU

vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API. By default, it starts the server at `http://localhost:8000`. You can specify the address with `--host` and `--port` arguments.

Run the following command to start the vLLM server on a single NPU:

```bash
vllm serve Qwen/Qwen2.5-7B-Instruct
```

Once your server is started, you can query the model with input prompts:

```bash
curl http://localhost:8000/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "Qwen/Qwen2.5-7B-Instruct",
"prompt": "San Francisco is a",
"max_tokens": 7,
"temperature": 0
}'
```

> [!TIP]
> You can use your local models when launching the vllm server or quering the model by replacing the value of `model` with `path/to/model`, e.g. `/root/models/Qwen/Qwen2.5-7B-Instruct`.
If you query the server successfully, you can see the info shown below:

```bash
...
```

## Distributed Inference

vLLM supports distributed tensor-parallel and pipeline-parallel inference and serving. To run multi-GPU inference with the `LLM` class, set the `tensor_parallel_size` argument to the number of GPUs you want to use.

```python
from vllm import LLM

prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="Qwen/Qwen2.5-7B-Instruct", tensor_parallel_size=4)

outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```

If you run this script successfully, you can see the info shown below:

```bash
...
```
Loading

0 comments on commit c71743c

Please sign in to comment.