-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_training_data.py
346 lines (280 loc) · 10.2 KB
/
visualize_training_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
import torch
import logging
import dgl
import dgl.nn as dglnn
import torch.nn as nn
import torch.nn.functional as F
from dgl.data import DGLDataset
from anonygraph.evaluation.classification.data_loader import DummyGraph, AnonyGraph
from anonygraph.evaluation.classification.rgcn_model import RGCN
from anonygraph.evaluation.classification.trainer import train
import anonygraph.utils.path as putils
import anonygraph.utils.runner as rutils
import anonygraph.utils.visualization as vutils
import warnings
import json
import os
import itertools
logger = logging.getLogger(__name__)
warnings.filterwarnings(action='ignore', category=UserWarning)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
def add_arguments(parser):
rutils.add_data_argument(parser)
rutils.add_sequence_data_argument(parser)
parser.add_argument("--refresh", type=rutils.str2bool, default="n")
parser.add_argument("--workers", type=int, default=1)
# rutils.add_graph_generalization_argument(parser)
# parser.add_argument('--d_list', type=rutils.string2list(int))
# parser.add_argument('--k_list', type=rutils.string2list(int))
# parser.add_argument('--w_list', type=rutils.string2list(int))
# parser.add_argument('--max_dist_list', type=rutils.string2list(float))
# parser.add_argument('--l_list', type=rutils.string2list(int))
# parser.add_argument("--calgo_list", type=rutils.string2list(str))
# parser.add_argument("--reset_w_list", type=rutils.string2list(int))
# rutils.add_workers_argument(parser)
rutils.add_log_argument(parser)
# parser.add_argument("--refresh", type=rutils.str2bool)
def get_metric_data_over_time(data):
t_list = sorted(map(int, data.keys()))
logger.debug(t_list)
results = []
metric_name = "test_avg_accuracy"
for t in t_list:
t_data = data.get(str(t))
metric_data = t_data[metric_name]
best_results = metric_data["best_results"]
avg_result = np.mean(sorted(best_results))
results.append(avg_result)
return t_list,results
def visualize_over_k(data, d, k_list):
logger.debug(data.keys())
model_data = data[str(d)]
# visualize_accuracy
# key = "{}_{}_{}_{}_{}".format(k,l,reset_w,calgo,enforcer_str)
raw_data = model_data.get("raw", None)
# t_list = sorted(map(int, data.keys()))
t_list,raw_results = get_metric_data_over_time(raw_data)
# logger.debug("{}:{}".format(len(t_list), t_list))
# logger.debug("{}:{}".format(len(raw_results), raw_results))
plt.plot(t_list, raw_results, label="raw")
l = 1
reset_w = -1
calgo="km"
enforcer_str="gs#1.00"
for k in k_list:
key = "{}_{}_{}_{}_{}".format(k,l,reset_w,calgo,enforcer_str)
anony_data = model_data.get(key, None)
# logger.debug(anony_data)
if anony_data is None:
continue
t_list,anony_results = get_metric_data_over_time(anony_data)
plt.plot(t_list, anony_results, label=k)
plt.legend()
plt.xticks(t_list)
plt.savefig("test-k.png")
plt.show()
def visualize_over_l(data, d, l_list):
logger.debug(data.keys())
model_data = data[str(d)]
# visualize_accuracy
# key = "{}_{}_{}_{}_{}".format(k,l,reset_w,calgo,enforcer_str)
raw_data = model_data.get("raw", None)
# t_list = sorted(map(int, data.keys()))
t_list,raw_results = get_metric_data_over_time(raw_data)
# logger.debug("{}:{}".format(len(t_list), t_list))
# logger.debug("{}:{}".format(len(raw_results), raw_results))
plt.plot(t_list, raw_results, label="raw")
k = 10
reset_w = -1
calgo="km"
enforcer_str="gs#1.00"
for l in l_list:
key = "{}_{}_{}_{}_{}".format(k,l,reset_w,calgo,enforcer_str)
anony_data = model_data.get(key, None)
# logger.debug(anony_data)
if anony_data is None:
continue
t_list,anony_results = get_metric_data_over_time(anony_data)
plt.plot(t_list, anony_results, label=l)
plt.legend()
plt.xticks(t_list)
plt.savefig("test-l.png")
plt.show()
def visualize_line_chart(df, x_name, y_name, cat_name, path):
x_values = df[x_name].unique()
cat_values= df[cat_name].unique()
logger.debug("x: {} - values: {}".format(x_name, x_values))
logger.debug("cat: {} - values: {}".format(cat_name, cat_values))
# sns.set_palette("pastel")
custom_palette = sns.color_palette("bright", len(cat_values))
sns.set_palette(custom_palette)
# sns.palplot(custom_palette)
# logger.debug(df)
figure = sns.lineplot(data=df, y=y_name, x=x_name, hue=cat_name, style=cat_name, palette=custom_palette, markers=True).get_figure()
plt.ylabel(get_title(y_name))
plt.xlabel(get_title(x_name))
plt.grid(linestyle="--", axis="y", color="grey", linewidth=0.5)
plt.xticks(x_values)
plt.legend(title=get_title(cat_name))
if path is not None:
save_figure(figure, path)
plt.show()
plt.clf()
def save_figure(figure, path):
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
logger.info("saving figure to: {}".format(path))
figure.savefig(path)
def visualize(df, x_name, cat_name, k_values, reset_w_values, l_values, enforcer_values, calgo_values, prefix):
df.sort_values(by=["calgo", "enforcer_str", "k", "l", "reset_w", "max_dist", "t"], inplace=True)
d_values=[200]
logger.debug(df["data"].unique())
data_name = df["data"].unique()[0]
logger.debug(df["k"].unique())
logger.debug(df["l"].unique())
logger.debug(df["reset_w"].unique())
logger.debug(df["calgo"].unique())
logger.debug(df["enforcer_str"].unique())
logger.debug(df["d"].unique())
logger.debug(df["top-5_test_avg_accuracy"].unique())
# logger.debug(df.columns)
df = df[(df["k"].isin(k_values))
& (df["l"].isin(l_values))
& (df["d"].isin(d_values))
& (df["reset_w"].isin(reset_w_values))
# & (df["enforcer_str"].isin(enforcer_values))
& (df["calgo"].isin(calgo_values))
]
# df = df[df["k"] == 1]
logger.debug(df[[x_name, "key_l", "key_k","train_avg_f1"]])
metrics = [
# "train_avg_f1",
# "train_avg_accuracy",
"test_avg_accuracy",
"top-5_test_avg_accuracy",
]
for metric in metrics:
path = os.path.join("exp_data", "training", "{}_{}_{}.png".format(prefix,data_name,metric))
logger.debug(metric)
visualize_line_chart(
df=df,
x_name=x_name,
y_name=metric,
cat_name=cat_name,
path=path,
)
def get_title(name):
name2title = {
"key_k": "k",
"key_l": "l",
"test_avg_accuracy": "Accuracy (%)"
}
title = name2title.get(name)
if title is None:
title = name
return title
def summarize_results(df, cat_name, k_values, reset_w_values, l_values, enforcer_values, calgo_values):
df.sort_values(by=["calgo", "enforcer_str", "k", "l", "reset_w", "max_dist", "t"], inplace=True)
d_values=[200]
# logger.debug(df["data"].unique())
# data_name = df["data"].unique()[0]
# logger.debug(df["k"].unique())
# logger.debug(df["l"].unique())
# logger.debug(df["reset_w"].unique())
# logger.debug(df["calgo"].unique())
# logger.debug(df["enforcer_str"].unique())
# logger.debug(df["d"].unique())
# logger.debug(df["top-5_test_avg_accuracy"].unique())
# # logger.debug(df.columns)
df = df[(df["k"].isin(k_values))
& (df["l"].isin(l_values))
& (df["d"].isin(d_values))
& (df["reset_w"].isin(reset_w_values))
# & (df["enforcer_str"].isin(enforcer_values))
& (df["calgo"].isin(calgo_values))
]
temp = df.groupby(by=cat_name).mean("top-5_test_avg_accuracy")
logger.info(temp[["top-5_test_avg_accuracy", "test_avg_accuracy"]])
def add_more_info(df):
df["key_k"] = df["k"]
df["key_k"].replace(1, "raw", inplace=True)
df["key_l"] = df["l"]
df.loc[df["key_k"] == "raw", "key_l"] = "raw"
# df["key_l"].replace("1", "raw", inplace=True)
logger.debug(df["key_k"].unique())
logger.debug(df["key_l"].unique())
def main(args):
data_name = args["data"]
strategy_name = args["strategy"]
data_path = putils.get_agg_training_data_path(data_name, strategy_name, args)
df = vutils.get_exp_data(
exp_path=data_path,
prepare_data_fn=vutils.prepare_training_data,
prepare_data_args={
"data": args["data"],
"sample": args["sample"],
"strategy": args["strategy"],
},
workers=args["workers"],
refresh=args["refresh"],
args=args
)
add_more_info(df)
# data = vutils.load_training_data(args, "")
# data = vutils.load_training_data2(args)
# df = pd.DataFrame(data)
# logger.debug(df)
# logger.debug(data_copy.keys())
# logger.debug(data.keys())
visualize(
df=df,
x_name="t",
cat_name="key_k",
k_values=[1, 2,4,6,8,10],
l_values=[1],
reset_w_values=[-1],
calgo_values=["km", "raw"],
enforcer_values=["gs#1.00", "raw"],
prefix="k",
)
visualize(
df=df,
x_name="t",
cat_name="key_l",
k_values=[1,10],
l_values=[1,2,3],
reset_w_values=[-1],
calgo_values=["km", "raw"],
enforcer_values=["gs#1.00", "raw"],
prefix="l",
)
summarize_results(
df=df,
# x_name="t",
cat_name="key_k",
k_values=[1, 2,4,6,8,10],
l_values=[1],
reset_w_values=[-1],
calgo_values=["km", "raw"],
enforcer_values=["gs#1.00", "raw"],
)
summarize_results(
df=df,
# x_name="t",
cat_name="key_l",
k_values=[1,10],
l_values=[1,2,3,4],
reset_w_values=[-1],
calgo_values=["km", "raw"],
enforcer_values=["gs#1.00", "raw"],
)
# visualize_over_k(data, d=200, k_list=[2,4,6,8,10])
# visualize_over_l(data, d=200, l_list=[1,2,3])
if __name__ == "__main__":
args = rutils.setup_arguments(add_arguments)
rutils.setup_console_logging(args)
main(args)