-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize_raw_subgraphs.py
331 lines (262 loc) · 9.57 KB
/
visualize_raw_subgraphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import numpy as np
import math
from time import time
from tqdm import tqdm
from joblib import Parallel, delayed
import glob
import argparse
import logging
import os
import itertools
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# from anonygraph import data
import anonygraph.utils.runner as rutils
import anonygraph.utils.data as dutils
import anonygraph.utils.path as putils
import anonygraph.utils.general as utils
import anonygraph.utils.visualization as visual
import anonygraph.time_graph_generators as generators
import anonygraph.algorithms.clustering as calgo
import anonygraph.algorithms as algo
import anonygraph.constants as constants
import anonygraph.evaluation.raw_subgraphs_metrics as rgmetrics
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logger = logging.getLogger(__name__)
def add_arguments(parser):
# rutils.add_data_argument(parser)
rutils.add_sequence_data_argument(parser)
rutils.add_workers_argument(parser)
rutils.add_log_argument(parser)
parser.add_argument("--refresh", type=rutils.str2bool)
def get_raw_snapshot_quality(subgraph, pre_subgraph, args):
metrics_names = rgmetrics.get_all_metric_names()
return rgmetrics.calculate_quality_metrics(
metrics_names, subgraph, pre_subgraph, args
)
def get_raw_snapshot_quality_from_path(graph_path):
info = putils.extract_info_from_raw_subgraph_path(graph_path)
logger.debug("subgraph_path: {} - info: {}".format(graph_path, info))
# raise Exception()
data_name = info["data"]
sample = info["sample"]
strategy_name = info["strategy"]
t = info["t"]
pre_t = max(t - 1, 0)
raw_subgraph = dutils.load_raw_subgraph(
data_name, sample, strategy_name, t, info
)
pre_raw_subgraph = dutils.load_raw_subgraph(
data_name, sample, strategy_name, pre_t, info
)
quality_info = get_raw_snapshot_quality(
raw_subgraph, pre_raw_subgraph, info
)
info.update(quality_info)
return info
def prepare_data(data_info, num_workers, args):
data_name, sample = data_info["data"], data_info["sample"]
dir_path = putils.get_output_path(data_name, sample)
logger.debug("sequence of snapshots path: {}".format(dir_path))
snapshot_paths = glob.glob(dir_path + "/*/raw/[0-9]*")
logger.info("preparing data from {} snapshots".format(len(snapshot_paths)))
logger.debug(snapshot_paths)
# raise Exception()
start_time = time()
raw_data = list(
Parallel(n_jobs=num_workers)(
delayed(get_raw_snapshot_quality_from_path)(path)
for path in tqdm(snapshot_paths)
)
)
logger.debug(raw_data)
logger.info(
"finished preparing data in {} seconds".format(time() - start_time)
)
# start_time = time()
# parts = utils.split_data_to_parts(clusters_paths, num_workers)
# raw_data = list(itertools.chain.from_iterable(
# Parallel(n_jobs=num_workers)(
# delayed(get_clusters_quality)(part) for part in tqdm(parts)
# )
# ))
# logger.debug(raw_data)
# logger.info("finished preparing data in {} seconds".format(time() - start_time))
return raw_data
def add_more_info(df):
df["strategy_key"] = df["strategy"] + "#" + df["n_sg"].map(str)
df["t"] = df["t"] + 1
df["data"].replace("yago15", "yago", inplace=True)
df["ratio_changed_edges"] = (df["num_new_edges"] + df["num_removed_edges"]) / (df["num_edges"])
df["ratio_changed_entities"] = (df["num_new_entities"] + df["num_removed_entities"]) / df["num_entities"]
def visualize(df, strategy_key):
logger.debug(df)
df = df[df["strategy_key"] == strategy_key]
df.sort_values(["t"], inplace=True)
logger.info("visualizing data: {}".format(df))
strategy_keys = df["strategy_key"].unique()
t_values = df["t"].unique()
logger.debug("strategy keys: {}".format(strategy_keys))
current_palette = sns.color_palette(n_colors=len(strategy_keys))
plt.plot(
"t",
constants.RAW_ENTITIES_METRIC,
data=df,
# marker="o",
linestyle="dashed",
label="num of entities",
color="red",
)
# plt.plot(
# "t",
# constants.RAW_EDGES_METRIC,
# data=df,
# # marker="^",
# # linestyle="",
# label="num of edges",
# color="blue",
# )
plt.ylabel("Data Size")
plt.xlabel("t")
plt.grid(linestyle="--")
plt.xticks(t_values)
plt.legend()
plt.show()
def get_title(name):
name2title = {
"num_entities": "Number of Entities",
"num_edges": "Number of Edges",
"num_new_entities": "Number of New Entities",
"num_old_entities": "Number of Old Entities",
"num_removed_entities": "Number of Removed Entities",
"num_new_edges": "Number of New Edges",
"data": "data",
"ratio_changed_edges": "Ratio of Added/Removed Edges (%)",
"ratio_changed_entities": "Ratio of Added/Removed Nodes (%)"
}
return name2title[name]
def visualize_strategies(df, strategy_keys, y_name, path=None):
df = df[df["strategy_key"].isin(strategy_keys)]
logger.debug(df)
df.sort_values(["t"], inplace=True)
logger.info("visualizing data: {}".format(df))
strategy_keys = df["strategy_key"].unique()
t_values = df["t"].unique()
logger.debug("strategy keys: {}".format(strategy_keys))
current_palette = sns.color_palette(n_colors=len(strategy_keys))
sns.lineplot(data=df, x="t", y=y_name, hue="strategy_key")
plt.ylabel(get_title(y_name))
plt.xlabel("t")
plt.grid(linestyle="--")
plt.xticks(t_values)
plt.legend()
if path is not None:
dir_name = os.path.dirname(path)
if not os.path.exists(dir_name):
os.makedirs(dir_name)
plt.savefig(path)
plt.show()
def get_xticks(name, values, num_sticks=-1):
if name == "t":
if num_sticks == -1:
x_ticks = values
else:
sorted_values = sorted(values)
step_value = math.floor(len(values) / num_sticks)
logger.debug("step_value: {}".format(step_value))
x_ticks = []
for val_idx in range(0, len(sorted_values), step_value):
# logger.debug("val_idx: {}".format(val_idx))
x_ticks.append(sorted_values[val_idx])
# x_ticks.append(sorted_values[-1])
logger.debug("xticks: {}".format(x_ticks))
else:
raise Exception("Unsupported get_xticks of {}".format(name))
return x_ticks
def visualize_metrics_of_all_datasets(df, x_name, y_name, cat_name, path, strategy_key):
logger.debug(df[[x_name, cat_name, y_name]])
df = df[(df["strategy_key"] == strategy_key)]
cat_values = df[cat_name].unique()
x_values = df[x_name].unique()
num_cat_values = len(cat_values)
logger.debug("filtered df (len: {}): {}".format(len(df), df[[x_name, cat_name, y_name]]))
current_palette = sns.color_palette(
n_colors=num_cat_values, palette="bright"
)
logger.info("y_name: {}".format(y_name))
for cat_value in cat_values:
current_df = df[(df[cat_name] == cat_value)]
logger.info("cat: {} - {} values - avg: {}".format(cat_value, len(current_df), np.mean(current_df[y_name])))
sns.lineplot(
data=df,
x=x_name,
y=y_name,
hue=cat_name,
style=cat_name,
palette=current_palette,
legend=False,
)
plt.ylabel(get_title(y_name))
plt.grid(linestyle="--")
plt.xticks(get_xticks(x_name, x_values, 8))
plt.legend(title=get_title(cat_name), labels=cat_values)
if path is not None:
if not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
plt.savefig(path)
plt.show()
plt.clf()
def main(args):
logger.debug(args)
data_names = ["email-temp", "yago15"]
# for each dataset, collect all its subgraphs' data
# merge all of them
df_list = []
for data_name in data_names:
data_path = putils.get_raw_snapshots_exp_data_path(data_name, -1, args)
current_df = visual.get_exp_data(
exp_path=data_path,
prepare_data_fn=prepare_data,
prepare_data_args={
"data": data_name,
"sample": -1,
},
workers=args["workers"],
refresh=args["refresh"],
args=args
)
logger.debug(
"data: {} - max_t: {}".format(data_name, max(current_df["t"]))
)
df_list.append(current_df)
df = pd.concat(df_list)
add_more_info(df)
logger.debug(df)
logger.info("visualizing")
# visualize(df, strategy_key="equalraw~50.0")
# metric_names = rgmetrics.get_all_metric_names()
metric_names = ["ratio_changed_edges", "ratio_changed_entities"]
for metric_name in metric_names:
dir_name = os.path.join(os.path.dirname(data_path), "figures")
file_name = "raw-graphs_{}.pdf".format(metric_name)
current_path = os.path.join(dir_name, file_name)
# logger.info("metric: {} - avg: {}".format(metric_name, np.mean(df[metric_name])))
visualize_metrics_of_all_datasets(
df=df,
x_name="t",
y_name=metric_name,
cat_name="data",
path=current_path,
strategy_key = "mean#20",
)
# visualize_strategies(
# df=df,
# strategy_keys=["mean~20", "mean~10"],
# y_name=metric_name,
# path=current_path
# )
if __name__ == "__main__":
args = rutils.setup_arguments(add_arguments)
rutils.setup_console_logging(args)
main(args)