Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add all_models/bert as an example for tensorrt-llm classification models #269

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added all_models/bert/ensemble/1/.tmp
Empty file.
115 changes: 115 additions & 0 deletions all_models/bert/ensemble/config.pbtxt
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

name: "ensemble"
platform: "ensemble"
max_batch_size: 200
input [
{
name: "text_input"
data_type: TYPE_STRING
dims: [ -1 ]
},
{
name: "bad_words"
data_type: TYPE_STRING
dims: [ -1 ]
optional: true
},
{
name: "stop_words"
data_type: TYPE_STRING
dims: [ -1 ]
optional: true
}
]
output [
{
name: "out_logits"
data_type: TYPE_FP32
dims: [ -1]
}
]
ensemble_scheduling {
step [
{
model_name: "preprocessing"
model_version: -1
input_map {
key: "QUERY"
value: "text_input"
}
input_map {
key: "BAD_WORDS_DICT"
value: "bad_words"
}
input_map {
key: "STOP_WORDS_DICT"
value: "stop_words"
}
output_map {
key: "REQUEST_INPUT_LEN"
value: "_REQUEST_INPUT_LEN"
}
output_map {
key: "INPUT_ID"
value: "_INPUT_ID"
}
output_map {
key: "STOP_WORDS_IDS"
value: "_STOP_WORDS_IDS"
}
output_map {
key: "BAD_WORDS_IDS"
value: "_BAD_WORDS_IDS"
}
},
{
model_name: "tensorrt_llm"
model_version: -1
input_map {
key: "input_ids"
value: "_INPUT_ID"
}
input_map {
key: "input_lengths"
value: "_REQUEST_INPUT_LEN"
}
input_map {
key: "stop_words_list"
value: "_STOP_WORDS_IDS"
}
input_map {
key: "bad_words_list"
value: "_BAD_WORDS_IDS"
}
output_map {
key: "logits"
value: "out_logits"
}
}
]
}
256 changes: 256 additions & 0 deletions all_models/bert/preprocessing/1/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,256 @@
# Copyright 2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import json
from typing import List

import numpy as np
import triton_python_backend_utils as pb_utils
from transformers import AutoTokenizer, LlamaTokenizer, T5Tokenizer


class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""

def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to initialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# Parse model configs
self.logger = pb_utils.Logger
self.logger.log_info("Info Msg!")

model_config = json.loads(args['model_config'])
tokenizer_dir = model_config['parameters']['tokenizer_dir'][
'string_value']
self.tokenizer = AutoTokenizer.from_pretrained(
tokenizer_dir, trust_remote_code=True)

self.max_len = int(model_config['parameters']['max_length']['string_value'])
# Parse model output configs and convert Triton types to numpy types
output_names = [
"INPUT_ID", "REQUEST_INPUT_LEN", "BAD_WORDS_IDS", "STOP_WORDS_IDS"
]

for output_name in output_names:
setattr(
self,
output_name.lower() + "_dtype",
pb_utils.triton_string_to_numpy(
pb_utils.get_output_config_by_name(
model_config, output_name)['data_type']))

def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""

responses = []

# Every Python backend must iterate over everyone of the requests
# and create a pb_utils.InferenceResponse for each of them.
# logger = pb_utils.Logger
for idx, request in enumerate(requests):
# Get input tensors
query = pb_utils.get_input_tensor_by_name(request,
'QUERY').as_numpy()
# self.logger.log(f'query shape: {query.shape}, query: {query}', self.logger.INFO)
# batch_dim = query.shape[0]
# if batch_dim != 1:

# err_str = "Inflight batching backend expects requests with batch size of 1."
# logger.log_error(err_str)
# responses.append(
# pb_utils.InferenceResponse(
# output_tensors=[],
# error=pb_utils.TritonError(err_str)))
# continue


bad_words_dict = pb_utils.get_input_tensor_by_name(
request, 'BAD_WORDS_DICT')
if bad_words_dict is not None:
bad_words_dict = bad_words_dict.as_numpy()

stop_words_dict = pb_utils.get_input_tensor_by_name(
request, 'STOP_WORDS_DICT')
if stop_words_dict is not None:
stop_words_dict = stop_words_dict.as_numpy()

# Preprocessing input data.
input_id, request_input_len = self._create_request(query)
bad_words = self._to_word_list_format(bad_words_dict)
stop_words = self._to_word_list_format(stop_words_dict)

# Create output tensors. You need pb_utils.Tensor
# objects to create pb_utils.InferenceResponse.
input_id_tensor = pb_utils.Tensor(
'INPUT_ID', input_id.astype(self.input_id_dtype))
request_input_len_tensor = pb_utils.Tensor(
'REQUEST_INPUT_LEN',
request_input_len.astype(self.request_input_len_dtype))

bad_words_ids_tensor = pb_utils.Tensor('BAD_WORDS_IDS', bad_words)
stop_words_ids_tensor = pb_utils.Tensor('STOP_WORDS_IDS',
stop_words)

inference_response = pb_utils.InferenceResponse(output_tensors=[
input_id_tensor, request_input_len_tensor, bad_words_ids_tensor, stop_words_ids_tensor,
])
responses.append(inference_response)

# You should return a list of pb_utils.InferenceResponse. Length
# of this list must match the length of `requests` list.
return responses

def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')

def _create_request(self, query):
"""
query : batch string (2D numpy array)
"""

input_ids_with_padding = self.tokenizer(
[query[0][0].decode('utf-8')], padding='max_length', max_length=self.max_len)
input_ids_without_padding = self.tokenizer(
[query[0][0].decode('utf-8')])

input_ids = np.array(input_ids_with_padding['input_ids']).astype(int)
input_lengths = [len(x) for x in input_ids_without_padding['input_ids']]
input_lengths = np.array([[x] for x in input_lengths]).astype(int)
# self.logger.log(f'input_lengths.shape: {input_lengths.shape}, input_ids: {input_ids}, input_lengths: {input_lengths}', self.logger.INFO)

return input_ids, input_lengths

def _to_word_list_format(self, word_lists: List[List[str | bytes]]):
'''
word_lists format:
len(word_lists) == batch_size
word_lists[i] means the words associated to batch item i. A "word" may actually be any string. Like "lorem" or "lorem ipsum".
'''
assert self.tokenizer != None, "need to set tokenizer"

if word_lists is None:
# Return an empty array of shape (1,2,0)
return np.empty([1, 2, 0], dtype="int32")

flat_ids = []
offsets = []
for word_list in word_lists:
item_flat_ids = []
item_offsets = []

for word in word_list:
if isinstance(word, bytes):
word = word.decode()

ids = self.tokenizer.encode(word, add_special_tokens=False)
if len(ids) == 0:
continue

item_flat_ids += ids
item_offsets.append(len(ids))

flat_ids.append(np.array(item_flat_ids))
offsets.append(np.cumsum(np.array(item_offsets)))

pad_to = max(1, max(len(ids) for ids in flat_ids))

for i, (ids, offs) in enumerate(zip(flat_ids, offsets)):
flat_ids[i] = np.pad(ids, (0, pad_to - len(ids)),
constant_values=0)
offsets[i] = np.pad(offs, (0, pad_to - len(offs)),
constant_values=-1)

return np.array([flat_ids, offsets], dtype="int32").transpose(
(1, 0, 2))

def _get_embedding_bias(self, embedding_bias_words, embedding_bias_weights,
bias_dtype):

assert self.tokenizer != None, "need to set tokenizer"

if embedding_bias_words is None or embedding_bias_weights is None:
return np.empty([1, 0], dtype=self.embedding_bias_weights_dtype)

batch_embedding_bias = []
for words, weights in zip(embedding_bias_words,
embedding_bias_weights):

vocab_size = self.tokenizer.vocab_size
embedding_bias = [0.] * vocab_size

assert len(words) == len(
weights
), "Embedding bias words must have same dimension as embedding bias weights"

for word, weight in zip(words, weights):
if isinstance(word, bytes):
word = word.decode()
ids = self.tokenizer.encode(word)

if len(ids) == 0:
continue

for id in ids:
embedding_bias[id] += weight

batch_embedding_bias.append(np.array(embedding_bias))

return np.array(batch_embedding_bias, dtype=bias_dtype)
Loading