-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
early stop mechanism when there is no improvement at all in last steps
- Loading branch information
Showing
2 changed files
with
146 additions
and
138 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,124 +1,128 @@ | ||
|
||
import numpy as np | ||
|
||
dict_results = { | ||
'dummy to copy' : {'aucs': [0., 0., 0., 0., 0.], | ||
'sens': [0., 0., 0., 0., 0.], | ||
'spec': [0., 0., 0., 0., 0.]}, | ||
|
||
'concat without gcn' : {'aucs': [0.7595, 0.6832, 0.6945, 0.7485, 0.7289], | ||
'sens': [0.9202, 0.5771, 0.6170, 0.7181, 0.7984], | ||
'spec': [0.3820, 0.6800, 0.6497, 0.6197, 0.4973]}, | ||
|
||
'concat with 5% gcn' : {'aucs': [0.7513, 0.6629, 0.6863, 0.7523, 0.7124], | ||
'sens': [0.6995, 0.6037, 0.7394, 0.7207, 0.6989], | ||
'spec': [0.6207, 0.6400, 0.5455, 0.6649, 0.5802]}, | ||
|
||
'concat with 20% gcn' : {'aucs': [0.7520, 0.6502, 0.6827, 0.7638, 0.7037], | ||
'sens': [0.7580, 0.5984, 0.5612, 0.7314, 0.6586], | ||
'spec': [0.5995, 0.6213, 0.6952, 0.6516, 0.6471]}, | ||
|
||
'xgboost binarised 5' : {'aucs': [0.6600, 0.7217, 0.6706, 0.7114, 0.6757], | ||
'sens': [0.6622, 0.7447, 0.6888, 0.6968, 0.7070], | ||
'spec': [0.6578, 0.6987, 0.6524, 0.7261, 0.6444]}, | ||
'xgboost binarised 20' : {'aucs': [0.7370, 0.7243, 0.7067, 0.7247, 0.7064], | ||
'sens': [0.7287, 0.7473, 0.6968, 0.6782, 0.7070], | ||
'spec': [0.7454, 0.7013, 0.7166, 0.7713, 0.7059]}, | ||
|
||
'mean_TCN_GCN5' : {'aucs': [0.6920, 0.6349, 0.5968, 0.7117, 0.6074], | ||
'sens': [1.0000, 1.0000, 0.0000, 0.8537, 1.0000], | ||
'spec': [0.0000, 0.0027, 1.0000, 0.3777, 0.0000]}, | ||
|
||
'mean_TCN' : {'aucs': [0.6928, 0.6169, 0.6612, 0.7520, 0.6453], | ||
'sens': [0.7287, 0.9973, 0.6064, 0.4601, 0.0000], | ||
'spec': [0.5438, 0.0160, 0.6364, 0.8723, 1.0000]}, | ||
|
||
'mean_CNN_64split+' : {'aucs': [0.6483, 0.6442, 0.6534, 0.6842, 0.6233], | ||
'sens': [0.6690, 0.6471, 0.5296, 0.6418, 0.6964], | ||
'spec': [0.5463, 0.5519, 0.6791, 0.6250, 0.4898]}, | ||
|
||
'mean_CNN_64split' : {'aucs': [0.6426, 0.6404, 0.6394, 0.6885, 0.6206], | ||
'sens': [0.6815, 0.6277, 0.5136, 0.6511, 0.6252], | ||
'spec': [0.5167, 0.5712, 0.6749, 0.6219, 0.5500]}, | ||
|
||
'AUC xgboost 64plit' : {'aucs': [0.6971, 0.6947, 0.6877, 0.6814, 0.6873], | ||
'sens': [0.6867, 0.6780, 0.6672, 0.6795, 0.6788], | ||
'spec': [0.7075, 0.7114, 0.7081, 0.6832, 0.6959]}, | ||
|
||
'AUC xgboost4plit' : {'aucs': [0.7875, 0.7723, 0.7853, 0.7859, 0.7950], | ||
'accs': [0.7875, 0.7723, 0.7853, 0.7859, 0.7949], | ||
'sens': [0.7686, 0.7899, 0.7819, 0.7660, 0.8118], | ||
'spec': [0.8064, 0.7547, 0.7888, 0.8059, 0.7781]}, | ||
############ | ||
'AUC diff_pool 5' : {'aucs': [0.6752, 0.6335, 0.6529, 0.6993, 0.6767], | ||
'accs': [0.6016, 0.6005, 0.6147, 0.6184, 0.6327], | ||
'f1s' : [0.6842, 0.6386, 0.6980, 0.6911, 0.6675]}, | ||
|
||
'AUC diff_pool 20' : {'aucs': [0.6576, 0.6453, 0.6744, 0.7378, 0.6735], | ||
'accs': [0.6255, 0.6165, 0.6400, 0.6343, 0.6434], | ||
'f1s' : [0.7044, 0.6697, 0.6438, 0.7046, 0.6463]}, | ||
|
||
'AUC mean 5' : {'aucs': [0.6782, 0.6404, 0.6872, 0.7488, 0.7032], | ||
'accs': [0.5007, 0.5819, 0.5947, 0.6622, 0.6180], | ||
'f1s' : [0.0000, 0.5527, 0.4967, 0.6947, 0.4956]}, | ||
|
||
'AUC mean 20' : {'aucs': [0.6787, 0.6404, 0.6873, 0.7490, 0.7021], | ||
'accs': [0.5007, 0.5819, 0.5693, 0.6622, 0.6072], | ||
'f1s' : [0.0000, 0.5527, 0.3501, 0.6947, 0.4564]}, | ||
|
||
'Loss diff_pool 5' : {'aucs': [0.5045, 0.5039, 0.6614, 0.5159, 0.6733], | ||
'accs': [0.5007, 0.5007, 0.6227, 0.5000, 0.6206], | ||
'f1s' : [0.0000, 0.6673, 0.6907, 0.6667, 0.6698]}, | ||
|
||
'Loss diff_pool 20' : {'aucs': [0.6915, 0.6444, 0.6722, 0.5247, 0.4919], | ||
'accs': [0.6255, 0.6192, 0.6173, 0.5000, 0.4987], | ||
'f1s' : [0.6853, 0.6324, 0.6530, 0.0000, 0.6655]}, | ||
|
||
'Loss mean 5' : {'aucs': [0.6895, 0.6388, 0.6871, 0.7488, 0.6807], | ||
'accs': [0.6321, 0.5925, 0.6267, 0.6622, 0.6059], | ||
'f1s' : [0.6126, 0.5785, 0.6143, 0.6947, 0.6142]}, | ||
|
||
'Loss mean 20' : {'aucs': [0.6895, 0.6388, 0.6871, 0.7490, 0.6807], | ||
'accs': [0.6321, 0.5925, 0.6267, 0.6622, 0.6059], | ||
'f1s' : [0.6126, 0.5785, 0.6143, 0.6947, 0.6202]}, | ||
|
||
############ | ||
'GCN AUC diff_pool 5' : {'aucs': [0.6097, 0.6304, 0.6719, 0.7066, 0.6454], | ||
'accs': [0.4993, 0.6178, 0.5013, 0.6449, 0.6005], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN AUC diff_pool 20' : {'aucs': [0.6367, 0.6383, 0.6703, 0.6999, 0.6736], | ||
'accs': [0.4993, 0.6152, 0.6293, 0.6609, 0.6247], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN AUC mean 5' : {'aucs': [0.7266, 0.6478, 0.6832, 0.7682, 0.6887], | ||
'accs': [0.4993, 0.5007, 0.6187, 0.6742, 0.5697], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN AUC mean 20' : {'aucs': [0.6778, 0.6506, 0.6706, 0.7282, 0.6904], | ||
'accs': [0.6361, 0.6232, 0.5013, 0.5000, 0.6099], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss diff_pool 5' : {'aucs': [0.5055, 0.4938, 0.6230, 0.5902, 0.4557], | ||
'accs': [0.4993, 0.4993, 0.5013, 0.5066, 0.4987], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss diff_pool 20' : {'aucs': [0.5159, 0.6256, 0.6658, 0.4174, 0.4065], | ||
'accs': [0.5060, 0.5925, 0.6320, 0.4814, 0.5013], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss mean 5' : {'aucs': [0.7206, 0.6477, 0.6855, 0.7581, 0.6935], | ||
'accs': [0.6640, 0.5925, 0.6280, 0.6862, 0.6287], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss mean 20' : {'aucs': [0.7216, 0.6460, 0.6840, 0.7588, 0.6897], | ||
'accs': [0.6521, 0.5939, 0.6320, 0.6902, 0.6247], | ||
'f1s' : [0., 0., 0., 0., 0.]} | ||
} | ||
|
||
|
||
for key, value in dict_results.items(): | ||
print(key, ":") | ||
for metric, values in value.items(): | ||
print(metric, ":", round(np.mean(values), 3), "(", round(np.std(values), 3), ")") | ||
print() | ||
|
||
import numpy as np | ||
|
||
dict_results = { | ||
'dummy to copy' : {'aucs': [0., 0., 0., 0., 0.], | ||
'sens': [0., 0., 0., 0., 0.], | ||
'spec': [0., 0., 0., 0., 0.]}, | ||
|
||
'ukb xgboost' : {'aucs': [0.8835, 0.8755, 0.8850, 0.8911, 0.8795], | ||
'sens': [0.8932, 0.8725, 0.8780, 0.8816, 0.8871], | ||
'spec': [0.8737, 0.8786, 0.8920, 0.9005, 0.8719]}, | ||
|
||
'concat without gcn' : {'aucs': [0.7595, 0.6832, 0.6945, 0.7485, 0.7289], | ||
'sens': [0.9202, 0.5771, 0.6170, 0.7181, 0.7984], | ||
'spec': [0.3820, 0.6800, 0.6497, 0.6197, 0.4973]}, | ||
|
||
'concat with 5% gcn' : {'aucs': [0.7513, 0.6629, 0.6863, 0.7523, 0.7124], | ||
'sens': [0.6995, 0.6037, 0.7394, 0.7207, 0.6989], | ||
'spec': [0.6207, 0.6400, 0.5455, 0.6649, 0.5802]}, | ||
|
||
'concat with 20% gcn' : {'aucs': [0.7520, 0.6502, 0.6827, 0.7638, 0.7037], | ||
'sens': [0.7580, 0.5984, 0.5612, 0.7314, 0.6586], | ||
'spec': [0.5995, 0.6213, 0.6952, 0.6516, 0.6471]}, | ||
|
||
'xgboost binarised 5' : {'aucs': [0.6600, 0.7217, 0.6706, 0.7114, 0.6757], | ||
'sens': [0.6622, 0.7447, 0.6888, 0.6968, 0.7070], | ||
'spec': [0.6578, 0.6987, 0.6524, 0.7261, 0.6444]}, | ||
'xgboost binarised 20' : {'aucs': [0.7370, 0.7243, 0.7067, 0.7247, 0.7064], | ||
'sens': [0.7287, 0.7473, 0.6968, 0.6782, 0.7070], | ||
'spec': [0.7454, 0.7013, 0.7166, 0.7713, 0.7059]}, | ||
|
||
'mean_TCN_GCN5' : {'aucs': [0.6920, 0.6349, 0.5968, 0.7117, 0.6074], | ||
'sens': [1.0000, 1.0000, 0.0000, 0.8537, 1.0000], | ||
'spec': [0.0000, 0.0027, 1.0000, 0.3777, 0.0000]}, | ||
|
||
'mean_TCN' : {'aucs': [0.6928, 0.6169, 0.6612, 0.7520, 0.6453], | ||
'sens': [0.7287, 0.9973, 0.6064, 0.4601, 0.0000], | ||
'spec': [0.5438, 0.0160, 0.6364, 0.8723, 1.0000]}, | ||
|
||
'mean_CNN_64split+' : {'aucs': [0.6483, 0.6442, 0.6534, 0.6842, 0.6233], | ||
'sens': [0.6690, 0.6471, 0.5296, 0.6418, 0.6964], | ||
'spec': [0.5463, 0.5519, 0.6791, 0.6250, 0.4898]}, | ||
|
||
'mean_CNN_64split' : {'aucs': [0.6426, 0.6404, 0.6394, 0.6885, 0.6206], | ||
'sens': [0.6815, 0.6277, 0.5136, 0.6511, 0.6252], | ||
'spec': [0.5167, 0.5712, 0.6749, 0.6219, 0.5500]}, | ||
|
||
'AUC xgboost 64plit' : {'aucs': [0.6971, 0.6947, 0.6877, 0.6814, 0.6873], | ||
'sens': [0.6867, 0.6780, 0.6672, 0.6795, 0.6788], | ||
'spec': [0.7075, 0.7114, 0.7081, 0.6832, 0.6959]}, | ||
|
||
'AUC xgboost4plit' : {'aucs': [0.7875, 0.7723, 0.7853, 0.7859, 0.7950], | ||
'accs': [0.7875, 0.7723, 0.7853, 0.7859, 0.7949], | ||
'sens': [0.7686, 0.7899, 0.7819, 0.7660, 0.8118], | ||
'spec': [0.8064, 0.7547, 0.7888, 0.8059, 0.7781]}, | ||
############ | ||
'AUC diff_pool 5' : {'aucs': [0.6752, 0.6335, 0.6529, 0.6993, 0.6767], | ||
'accs': [0.6016, 0.6005, 0.6147, 0.6184, 0.6327], | ||
'f1s' : [0.6842, 0.6386, 0.6980, 0.6911, 0.6675]}, | ||
|
||
'AUC diff_pool 20' : {'aucs': [0.6576, 0.6453, 0.6744, 0.7378, 0.6735], | ||
'accs': [0.6255, 0.6165, 0.6400, 0.6343, 0.6434], | ||
'f1s' : [0.7044, 0.6697, 0.6438, 0.7046, 0.6463]}, | ||
|
||
'AUC mean 5' : {'aucs': [0.6782, 0.6404, 0.6872, 0.7488, 0.7032], | ||
'accs': [0.5007, 0.5819, 0.5947, 0.6622, 0.6180], | ||
'f1s' : [0.0000, 0.5527, 0.4967, 0.6947, 0.4956]}, | ||
|
||
'AUC mean 20' : {'aucs': [0.6787, 0.6404, 0.6873, 0.7490, 0.7021], | ||
'accs': [0.5007, 0.5819, 0.5693, 0.6622, 0.6072], | ||
'f1s' : [0.0000, 0.5527, 0.3501, 0.6947, 0.4564]}, | ||
|
||
'Loss diff_pool 5' : {'aucs': [0.5045, 0.5039, 0.6614, 0.5159, 0.6733], | ||
'accs': [0.5007, 0.5007, 0.6227, 0.5000, 0.6206], | ||
'f1s' : [0.0000, 0.6673, 0.6907, 0.6667, 0.6698]}, | ||
|
||
'Loss diff_pool 20' : {'aucs': [0.6915, 0.6444, 0.6722, 0.5247, 0.4919], | ||
'accs': [0.6255, 0.6192, 0.6173, 0.5000, 0.4987], | ||
'f1s' : [0.6853, 0.6324, 0.6530, 0.0000, 0.6655]}, | ||
|
||
'Loss mean 5' : {'aucs': [0.6895, 0.6388, 0.6871, 0.7488, 0.6807], | ||
'accs': [0.6321, 0.5925, 0.6267, 0.6622, 0.6059], | ||
'f1s' : [0.6126, 0.5785, 0.6143, 0.6947, 0.6142]}, | ||
|
||
'Loss mean 20' : {'aucs': [0.6895, 0.6388, 0.6871, 0.7490, 0.6807], | ||
'accs': [0.6321, 0.5925, 0.6267, 0.6622, 0.6059], | ||
'f1s' : [0.6126, 0.5785, 0.6143, 0.6947, 0.6202]}, | ||
|
||
############ | ||
'GCN AUC diff_pool 5' : {'aucs': [0.6097, 0.6304, 0.6719, 0.7066, 0.6454], | ||
'accs': [0.4993, 0.6178, 0.5013, 0.6449, 0.6005], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN AUC diff_pool 20' : {'aucs': [0.6367, 0.6383, 0.6703, 0.6999, 0.6736], | ||
'accs': [0.4993, 0.6152, 0.6293, 0.6609, 0.6247], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN AUC mean 5' : {'aucs': [0.7266, 0.6478, 0.6832, 0.7682, 0.6887], | ||
'accs': [0.4993, 0.5007, 0.6187, 0.6742, 0.5697], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN AUC mean 20' : {'aucs': [0.6778, 0.6506, 0.6706, 0.7282, 0.6904], | ||
'accs': [0.6361, 0.6232, 0.5013, 0.5000, 0.6099], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss diff_pool 5' : {'aucs': [0.5055, 0.4938, 0.6230, 0.5902, 0.4557], | ||
'accs': [0.4993, 0.4993, 0.5013, 0.5066, 0.4987], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss diff_pool 20' : {'aucs': [0.5159, 0.6256, 0.6658, 0.4174, 0.4065], | ||
'accs': [0.5060, 0.5925, 0.6320, 0.4814, 0.5013], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss mean 5' : {'aucs': [0.7206, 0.6477, 0.6855, 0.7581, 0.6935], | ||
'accs': [0.6640, 0.5925, 0.6280, 0.6862, 0.6287], | ||
'f1s' : [0., 0., 0., 0., 0.]}, | ||
|
||
'GCN Loss mean 20' : {'aucs': [0.7216, 0.6460, 0.6840, 0.7588, 0.6897], | ||
'accs': [0.6521, 0.5939, 0.6320, 0.6902, 0.6247], | ||
'f1s' : [0., 0., 0., 0., 0.]} | ||
} | ||
|
||
|
||
for key, value in dict_results.items(): | ||
print(key, ":") | ||
for metric, values in value.items(): | ||
print(metric, ":", round(np.mean(values), 3), "(", round(np.std(values), 3), ")") | ||
print() |