Skip to content

theodumont/modular-memorability

Repository files navigation

Modular Memorability: Tiered Representations for Video Memorability Prediction

This repository contains an implementation of M3-S for the CVPR 2023 paper "Modular Memorability: Tiered Representations for Video Memorability Prediction", that achieves the following Spearman rank correlation scores:

Memento10k VideoMem
M3-S 0.670 0.563

⚠️ These scores are achieved by training the whole network architecture, and not only the prediction MLP. At the present time, only the MLP finetuning is available on this repository, yielding the following scores. We apologize for the inconvenience and the lack of exact reproducibility of our results this implies.

Memento10k VideoMem
M3-S (training MLP only) 0.6355 0.5158

Code overview

Here are the main files and folders:

  • train.py
  • config.py: defines the training constants (e.g. batch size, learning rate, nb of epochs) as well as the path variables
  • model/
  • dataset.py

Installation

  1. Requirements. We provide a conda environment for the packages installation.
    # conda env
    conda env create -f envs/modular-mem.yml
    conda activate modular-mem
    
    # install HRNet
    pip install git+https://github.com/CSAILVision/semantic-segmentation-pytorch.git@master
    # install torchsort
    pip install torchsort
    # download pretrained models for HRNet and set up CSN
    bash download_pretrained.sh
    # (only to generate features) extract pre-computed .pickle files for PCA
    tar -xvf pickle.tar; rm pickle.tar
  2. Datasets & features.
    • Datasets: The Memento10k and VideoMem datasets have to be downloaded beforehand. The directories should have the following structure:
      /Memento10k/
      ├── videos_npy/
      ├── memento_test_data.json
      ├── memento_train_data.json
      └── memento_val_data.json
      /VideoMem/
      ├── resized_mp4/
      ├── ground-truth_dev-set.csv
      └── train_test_split_videomem.pkl
      where videos_npy contains the videos of Memento10k in .npy format and resized_mp4 contains the videos of VideoMem in .mp4 format, resized to 256x256. By default, it is assumed that the datasets are in a datasets directory, located at the same level as the modular-memorability folder, but this behavior can be changed in the config.py file.
    • Raw, semantic and similarity features: To generate the features, use the gen_features.py script:
      python3 gen_features.py
      The features will be generated in both datasets/${DATASET_NAME} folders (where ${DATASET_NAME} is either Memento10k or VideoMem).

Evaluation

We provide some model weights below:

Dataset Spearman RC Weights File size
Memento10k 0.6355 m3s_memento10k 7.3MB
VideoMem 0.5158 m3s_videomem 7.0MB

To reproduce these two specific training results, you can run:

python3 train.py --dataset Memento10k --seed 3          --batch_size 32 --lr 0.001                 --epochs 20 --loss mse             --scheduler_gamma 0.2                --scheduler_step_size 5 --weight_decay 1e-5                   --use_raw --raw_features hog brightness contrast meanOF blurriness size_orig --use_similarity --similarity_methods dbscan --similarity_methods hrnet ip_csn_152 --use_hrnet --use_csn --use_similarity --similarity_methods dbscan --similarity_methods hrnet ip_csn_152
python3 train.py --dataset VideoMem   --seed 1528126568 --batch_size 32 --lr 0.0004057400860408805 --epochs 20 --loss mse_to_spearman --scheduler_gamma 0.2852061798531863 --scheduler_step_size 8 --weight_decay 1.1226272823355355e-05 --use_raw --raw_features hog brightness contrast meanOF blurriness size_orig --use_similarity --similarity_methods dbscan --similarity_methods hrnet ip_csn_152 --use_hrnet --use_csn --use_similarity --similarity_methods dbscan --similarity_methods hrnet ip_csn_152

There are the exact same parameters we used, and most of them are already the default in config.py.

Training

Basics

In order to train a model, simply choose the default hyperparameters in the config.py file (you can also specify them in command line), then run:

# default hyperparameters
python3 train.py
# custom hyperparameters
python3 train.py --lr 0.0005 --batch_size 16

Loading a checkpoint

To do

Using wandb

In order to log the results using wandb, you have to fill the __C.CONST.WANDB_X variables in the config.py file, and specify the --log (-l) argument during training.

Command-line arguments (details)

Running python3 train.py --help gives:

usage: train.py [-h] [-n NAME] [-s] [-l] [-i] [--seed SEED] [--group GROUP] [--tags TAGS [TAGS ...]] [--data_augmentation] [--use_raw] [--raw_features RAW_FEATURES [RAW_FEATURES ...]] [--normalize_raw] [--use_temporal_std] [--fixed_features] [--use_hrnet] [--use_csn] [--hrnet_frames {1,5,9}] [--csn_arch {ip_csn_152,ir_csn_152}] [--use_similarity] [--similarity_features SIMILARITY_FEATURES [SIMILARITY_FEATURES ...]] [--similarity_methods SIMILARITY_METHODS [SIMILARITY_METHODS ...]] [--normalize_similarity] [--hidden_channels HIDDEN_CHANNELS [HIDDEN_CHANNELS ...]] [--dataset {Memento10k,LaMem}] [--batch_size BATCH_SIZE] [--loss {mse,l1,spearman,mse_to_spearman}] [--lr LR] [--epochs EPOCHS] [--optimizer OPTIMIZER] [--weight_decay WEIGHT_DECAY] [--scheduler SCHEDULER] [--scheduler_gamma SCHEDULER_GAMMA] [--scheduler_step_size SCHEDULER_STEP_SIZE] [--checkpoint_local] [--checkpoint_run_id CHECKPOINT_RUN_ID] [--checkpoint_epoch CHECKPOINT_EPOCH]

Training script for memorability model

optional arguments:
  -h, --help                                          show this help message and exit
  -n NAME, --name NAME                                name to append to run id
  -s, --save                                          whether saving weights
  -l, --log                                           whether logging in WANDB
  -i, --log_images                                    whether logging images in WANDB
  --seed SEED                                         random seed, will be set for numpy and pytorch
  --group GROUP                                       to group runs in wandb
  --tags TAGS                                         tags in wandb
  --data_augmentation                                 whether using data augmentation for input video, requires fixed_features set to False
  --use_raw                                           whether using the raw module
  --raw_features RAW_FEATURES                         list of raw features
  --normalize_raw                                     whether normalizing them
  --use_temporal_std                                  whether using the temporal std of the raw features
  --fixed_features                                    whether using pre-computed features
  --use_hrnet                                         whether using the HRNet module
  --use_csn                                           whether using the CSN module
  --hrnet_frames {1,5,9}                              nb frames as input to HRNet
  --csn_arch {ip_csn_152,ir_csn_152}                  CSN architecture
  --use_similarity                                    whether using the similarity module
  --similarity_features SIMILARITY_FEATURES           list of similarity features
  --similarity_methods SIMILARITY_METHODS             list of similarity methods
  --normalize_similarity                              whether normalizing them
  --hidden_channels HIDDEN_CHANNELS                   MLP hidden layers
  --dataset {Memento10k,LaMem,VideoMem}               dataset on which to train
  --batch_size BATCH_SIZE                             batch size
  --loss {mse,l1,mse_tails,spearman,mse_to_spearman}  loss function
  --lr LR                                             start learning rate
  --epochs EPOCHS                                     nb of epochs
  --optimizer OPTIMIZER                               optimizer name
  --weight_decay WEIGHT_DECAY                         optimizer weight decay (regularization)
  --scheduler SCHEDULER                               scheduler name
  --scheduler_gamma SCHEDULER_GAMMA                   coeff for learning rate decay
  --scheduler_step_size SCHEDULER_STEP_SIZE           step for lerning rate decay
  --checkpoint_local                                  using local storage or wandb cloud for loading checkpoint
  --checkpoint_run_id CHECKPOINT_RUN_ID               ID of checkpoint run in wandb
  --checkpoint_epoch CHECKPOINT_EPOCH                 epoch of checkpoint run in wandb

Compression features with VideoMem

In order to use the compression features with VideoMem, one needs to uncomment the following line in config.py

"dbscan": {"file_extension": ".txt", "folder_name": "dbscan",  "nb_features": 699 / 2},  # VideoMem

and comment this one

"dbscan": {"file_extension": ".txt", "folder_name": "dbscan",  "nb_features": 852 / 2},  # Memento10k