Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Separated tests into their own module. #139

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions src/main.rs
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,9 @@ use std::io::Write;
pub mod solutions;
pub mod utils;

#[cfg(test)]
mod tests;

/// Execute the solution (if available) of the specified problem. Also measure
/// its running time.
///
Expand Down
2 changes: 1 addition & 1 deletion src/solutions/distinct_powers.rs
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ use crate::utils;
/// * `primes` - Prime numbers to use to calculate the exponent.
///
/// -> Exponent.
fn exponent(mut num: i64, primes: &Vec<i64>) -> i64 {
fn exponent(mut num: i64, primes: &[i64]) -> i64 {
// Calculate the greatest exponent of every prime in the given number.
let mut exponents = vec![0i64; primes.len()];
let mut gcd = 0;
Expand Down
98 changes: 98 additions & 0 deletions src/tests.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
use crate::utils;
use std::io::BufRead;

#[cfg(target_pointer_width = "64")]
#[test]
fn is_prime_smaller_test() {
let num_of_primes = (0..2i64.pow(32)).filter(|&num| utils::is_prime(num)).count();
assert_eq!(num_of_primes, 203280221);
}

#[cfg(target_pointer_width = "64")]
#[test]
fn is_prime_small_test() {
let num_of_primes = (2i64.pow(32)..2i64.pow(33)).filter(|&num| utils::is_prime(num)).count();
assert_eq!(num_of_primes, 190335585);
}

#[test]
fn is_prime_large_test() {
let fhandle = std::fs::File::open("res/is_prime_large_test.txt").unwrap();
let reader = std::io::BufReader::new(fhandle);
for line in reader.lines() {
let line = line.unwrap();
let mut num_primality = line.split_ascii_whitespace();
let num = num_primality.next().unwrap().parse().unwrap();
let primality = num_primality.next().unwrap().parse().unwrap();
assert_eq!(utils::is_prime(num), primality);
}
}

#[test]
fn gcd_test() {
let fhandle = std::fs::File::open("res/gcd_test.txt").unwrap();
let reader = std::io::BufReader::new(fhandle);
for line in reader.lines() {
let line = line.unwrap();
let [a, b, g]: [i64; 3] = line
.split_ascii_whitespace()
.map(|s| s.parse().unwrap())
.collect::<Vec<i64>>()
.try_into()
.unwrap();
assert_eq!(a, utils::gcd(a, a));
assert_eq!(b, utils::gcd(b, b));
assert_eq!(g, utils::gcd(g, g));
assert_eq!(g, utils::gcd(a, b));
assert_eq!(g, utils::gcd(b, a));
}
}

#[test]
fn isqrt_test() {
assert_eq!(utils::isqrt(2i64.pow(53) - 1), 94906265);
assert_eq!(utils::isqrt(2i64.pow(54) - 1), 134217727);
}

#[test]
fn long_test() {
let mut num = &utils::Long::new("43").pow(37) * &utils::Long::from(745683);
num += &utils::Long::factorial(51);
assert_eq!(
num.to_string(),
"3597031455246992664728898500113748859466269359952342048214143659169"
);
}

#[test]
fn sieve_of_atkin_smaller_test() {
let num_of_primes = utils::SieveOfAtkin::new(2usize.pow(14)).iter().count();
assert_eq!(num_of_primes, 1900);
}

#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
#[test]
fn sieve_of_atkin_small_test() {
let num_of_primes = utils::SieveOfAtkin::new(10usize.pow(9)).iter().count();
assert_eq!(num_of_primes, 50847534);
}

#[cfg(target_pointer_width = "64")]
#[test]
fn sieve_of_atkin_large_test() {
let num_of_primes = utils::SieveOfAtkin::new(2usize.pow(36)).iter().count();
assert_eq!(num_of_primes, 2874398515);
}

#[test]
fn continued_fraction_test() {
let fhandle = std::fs::File::open("res/continued_fraction_test.txt").unwrap();
let reader = std::io::BufReader::new(fhandle);
for line in reader.lines() {
let line = line.unwrap();
let mut num_terms = line.split_ascii_whitespace();
let num = num_terms.next().unwrap().parse().unwrap();
let terms = num_terms.next().unwrap().split(',').map(|s| s.parse().unwrap());
assert!(utils::ContinuedFraction::new(num).eq(terms));
}
}
102 changes: 0 additions & 102 deletions src/utils.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1289,105 +1289,3 @@ impl Iterator for ContinuedFraction {
Some(a)
}
}

#[cfg(test)]
mod tests {
use crate::utils;
use std::io::BufRead;

#[cfg(target_pointer_width = "64")]
#[test]
fn is_prime_smaller_test() {
let num_of_primes = (0..2i64.pow(32)).filter(|&num| utils::is_prime(num)).count();
assert_eq!(num_of_primes, 203280221);
}

#[cfg(target_pointer_width = "64")]
#[test]
fn is_prime_small_test() {
let num_of_primes = (2i64.pow(32)..2i64.pow(33)).filter(|&num| utils::is_prime(num)).count();
assert_eq!(num_of_primes, 190335585);
}

#[test]
fn is_prime_large_test() {
let fhandle = std::fs::File::open("res/is_prime_large_test.txt").unwrap();
let reader = std::io::BufReader::new(fhandle);
for line in reader.lines() {
let line = line.unwrap();
let mut num_primality = line.split_ascii_whitespace();
let num = num_primality.next().unwrap().parse().unwrap();
let primality = num_primality.next().unwrap().parse().unwrap();
assert_eq!(utils::is_prime(num), primality);
}
}

#[test]
fn gcd_test() {
let fhandle = std::fs::File::open("res/gcd_test.txt").unwrap();
let reader = std::io::BufReader::new(fhandle);
for line in reader.lines() {
let line = line.unwrap();
let [a, b, g]: [i64; 3] = line
.split_ascii_whitespace()
.map(|s| s.parse().unwrap())
.collect::<Vec<i64>>()
.try_into()
.unwrap();
assert_eq!(a, utils::gcd(a, a));
assert_eq!(b, utils::gcd(b, b));
assert_eq!(g, utils::gcd(g, g));
assert_eq!(g, utils::gcd(a, b));
assert_eq!(g, utils::gcd(b, a));
}
}

#[test]
fn isqrt_test() {
assert_eq!(utils::isqrt(2i64.pow(53) - 1), 94906265);
assert_eq!(utils::isqrt(2i64.pow(54) - 1), 134217727);
}

#[test]
fn long_test() {
let mut num = &utils::Long::new("43").pow(37) * &utils::Long::from(745683);
num += &utils::Long::factorial(51);
assert_eq!(
num.to_string(),
"3597031455246992664728898500113748859466269359952342048214143659169"
);
}

#[test]
fn sieve_of_atkin_smaller_test() {
let num_of_primes = utils::SieveOfAtkin::new(2usize.pow(14)).iter().count();
assert_eq!(num_of_primes, 1900);
}

#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
#[test]
fn sieve_of_atkin_small_test() {
let num_of_primes = utils::SieveOfAtkin::new(10usize.pow(9)).iter().count();
assert_eq!(num_of_primes, 50847534);
}

#[cfg(target_pointer_width = "64")]
#[test]
fn sieve_of_atkin_large_test() {
let num_of_primes = utils::SieveOfAtkin::new(2usize.pow(36)).iter().count();
assert_eq!(num_of_primes, 2874398515);
}

#[test]
fn continued_fraction_test() {
let fhandle = std::fs::File::open("res/continued_fraction_test.txt").unwrap();
let reader = std::io::BufReader::new(fhandle);
for line in reader.lines() {
let line = line.unwrap();
let mut num_terms = line.split_ascii_whitespace();
let num = num_terms.next().unwrap().parse().unwrap();
let terms = num_terms.next().unwrap().split(',').map(|s| s.parse().unwrap());
assert!(utils::ContinuedFraction::new(num).eq(terms));
}
}
}