Skip to content

Commit

Permalink
update hedge fund
Browse files Browse the repository at this point in the history
  • Loading branch information
MuslemRahimi committed May 29, 2024
1 parent 68080ac commit 31b34a2
Show file tree
Hide file tree
Showing 2 changed files with 43 additions and 7 deletions.
34 changes: 34 additions & 0 deletions app/cron_hedge_funds.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,40 @@ def all_hedge_funds(con):
json.dump(sorted_res_list, file)


def spy_performance():
import pandas as pd
import yfinance as yf
from datetime import datetime

# Define the start date and end date
start_date = '1993-01-01'
end_date = datetime.today().strftime('%Y-%m-%d')

# Generate the range of dates with quarterly frequency
date_range = pd.date_range(start=start_date, end=end_date, freq='Q')

# Convert the dates to the desired format (end of quarter dates)
end_of_quarters = date_range.strftime('%Y-%m-%d').tolist()

data = []

df = yf.download('SPY', start='1993-01-01', end=datetime.today(), interval="1d").reset_index()
df = df.rename(columns={'Adj Close': 'close', 'Date': 'date'})

df['date'] = df['date'].dt.strftime('%Y-%m-%d')
for target_date in end_of_quarters:
original_date = target_date
# Find close price for '2015-03-31' or the closest available date prior to it
while target_date not in df['date'].values:
# If the target date doesn't exist, move one day back
target_date = (pd.to_datetime(target_date) - pd.Timedelta(days=1)).strftime('%Y-%m-%d')

# Get the close price for the found or closest date
close_price = round(df[df['date'] == target_date]['close'].values[0],2)
data.append({'date': original_date, 'price': close_price})
print(data)



if __name__ == '__main__':
con = sqlite3.connect('institute.db')
Expand Down
16 changes: 9 additions & 7 deletions app/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -1410,19 +1410,21 @@ async def get_hedge_funds_data(data: GetCIKData):
cursor = con_inst.cursor()

# Execute a SQL query to select the top 10 best performing cik entries by winRate
cursor.execute("SELECT cik, name, numberOfStocks, performancePercentage3year, averageHoldingPeriod, turnover, marketValue, winRate, holdings, summary FROM institutes WHERE cik = ?", (cik,))
cursor.execute("SELECT cik, name, numberOfStocks, performancePercentage3year, performancePercentage5year, performanceSinceInceptionPercentage, averageHoldingPeriod, turnover, marketValue, winRate, holdings, summary FROM institutes WHERE cik = ?", (cik,))
cik_data = cursor.fetchall()
res = [{
'cik': row[0],
'name': row[1],
'numberOfStocks': row[2],
'performancePercentage3year': row[3],
'averageHoldingPeriod': row[4],
'turnover': row[5],
'marketValue': row[6],
'winRate': row[7],
'holdings': ujson.loads(row[8]),
'summary': ujson.loads(row[9]),
'performancePercentage5year': row[4],
'performanceSinceInceptionPercentage': row[5],
'averageHoldingPeriod': row[6],
'turnover': row[7],
'marketValue': row[8],
'winRate': row[9],
'holdings': ujson.loads(row[10]),
'summary': ujson.loads(row[11]),
} for row in cik_data]

res_json = ujson.dumps(res[0]).encode('utf-8')
Expand Down

0 comments on commit 31b34a2

Please sign in to comment.