Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
acb11711tx committed Dec 29, 2020
1 parent b70f55d commit 1094558
Show file tree
Hide file tree
Showing 3 changed files with 4 additions and 942 deletions.
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -53,11 +53,11 @@ Arguments for gradient methods:

### Examples

#### Saptiotemporal Perturbation + R(2+1)D (pretrained on Kinetics-400)
#### STEP + R(2+1)D (pretrained on Kinetics-400)
`$ python main.py --videos_dir VideoVisual/test_data/kinetics/sampled_frames --model r2plus1d --pretrain_dataset kinetics --vis_method step --num_iter 2000 --perturb_area 0.1`

#### Spatiotemporal Perturbation + TSM (pretrained on EPIC-Kitchens-noun)
`$ python main.py --videos_dir VideoVisual/test_data/epic-kitchens-noun/sampled_frames --model tsm --pretrain_dataset epic-kitchens-noun --vis_method perturb --num_iter 2000 --perturb_area 0.05`
#### 3D-EP + TSM (pretrained on EPIC-Kitchens-noun)
`$ python main.py --videos_dir VideoVisual/test_data/epic-kitchens-noun/sampled_frames --model tsm --pretrain_dataset epic-kitchens-noun --vis_method 3d_ep --num_iter 2000 --perturb_area 0.05`

#### Integrated Gradients + I3D (pretrained on Kinetics-400)
`$ python main.py --videos_dir VideoVisual/test_data/kinetics/sampled_frames --model i3d --pretrain_dataset kinetics --vis_method integrated_grad`
Expand Down Expand Up @@ -85,7 +85,7 @@ Arguments for gradient methods:

## Reference

### Ours preprint (to appear in WACV2021):
### Ours preprint for perturbation-based attribution (to appear in WACV2021):
```
@article{li2020comprehensive,
title={Towards Visually Explaining Video Understanding Networks with Perturbation},
Expand Down
Loading

0 comments on commit 1094558

Please sign in to comment.