-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathro_wordpiece.py
251 lines (207 loc) · 9.2 KB
/
ro_wordpiece.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Adapted for Romanian from BertWordPieceTokenizer, of
# tokenizers.implementations.bert_wordpiece
import sys
import os
from typing import Dict, List, Optional, Union
from tokenizers import AddedToken, Tokenizer, decoders, trainers
from tokenizers.models import WordPiece
from tokenizers.normalizers import Normalizer
from tokenizers.pre_tokenizers import PreTokenizer
from ro_normalizer import RomanianNormalizer
from ro_pretokenizer import RomanianPreTokenizer, TrainingPreTokenizer
from ro_decoder import RomanianDecoder
from tokenizers.implementations import BaseTokenizer
from transformers import PreTrainedTokenizer
class RoBertWordPieceTokenizer(BaseTokenizer):
"""Romanian-specific Bert WordPiece Tokenizer"""
def __init__(
self,
vocab: Optional[Union[str, Dict[str, int]]] = None,
unk_token: Union[str, AddedToken] = "[UNK]",
sep_token: Union[str, AddedToken] = "[SEP]",
cls_token: Union[str, AddedToken] = "[CLS]",
pad_token: Union[str, AddedToken] = "[PAD]",
mask_token: Union[str, AddedToken] = "[MASK]",
wordpieces_prefix: str = "##",
train_mode: bool = False
):
if train_mode:
ro_pretokenizer = TrainingPreTokenizer()
max_token_len = RomanianPreTokenizer().maxwordlen
else:
ro_pretokenizer = RomanianPreTokenizer()
max_token_len = ro_pretokenizer.maxwordlen
# end if
if vocab is not None:
tokenizer = Tokenizer(WordPiece(vocab,
unk_token=str(unk_token),
max_input_chars_per_word=max_token_len))
else:
tokenizer = Tokenizer(WordPiece(unk_token=str(unk_token),
max_input_chars_per_word=max_token_len))
# end if
# Let the tokenizer know about special tokens if they are part of the vocab
if tokenizer.token_to_id(str(unk_token)) is not None:
tokenizer.add_special_tokens([str(unk_token)])
# end if
if tokenizer.token_to_id(str(sep_token)) is not None:
tokenizer.add_special_tokens([str(sep_token)])
# end if
if tokenizer.token_to_id(str(cls_token)) is not None:
tokenizer.add_special_tokens([str(cls_token)])
# end if
if tokenizer.token_to_id(str(pad_token)) is not None:
tokenizer.add_special_tokens([str(pad_token)])
# end if
if tokenizer.token_to_id(str(mask_token)) is not None:
tokenizer.add_special_tokens([str(mask_token)])
# end if
if not train_mode:
tokenizer.normalizer = Normalizer.custom(RomanianNormalizer())
# end if
tokenizer.pre_tokenizer = PreTokenizer.custom(ro_pretokenizer)
if vocab is not None:
sep_token_id = tokenizer.token_to_id(str(sep_token))
if sep_token_id is None:
raise TypeError("sep_token not found in the vocabulary")
# end if
cls_token_id = tokenizer.token_to_id(str(cls_token))
if cls_token_id is None:
raise TypeError("cls_token not found in the vocabulary")
# end if
# end if
tokenizer.decoder = decoders.Sequence([
decoders.WordPiece(prefix=wordpieces_prefix, cleanup=True),
# TODO: Decoder.custom() is not yet implemented in tokenizers.
# When updating this module, try and uncomment the next decoder
# and update the test_pretrained.py/test_one() and test_two() methods
# to remove spaces in front of clitics (e.g. '-o')
#
# decoders.Decoder.custom(RomanianDecoder())
])
parameters = {
"model": "RoBertWordPiece",
"unk_token": unk_token,
"sep_token": sep_token,
"cls_token": cls_token,
"pad_token": pad_token,
"mask_token": mask_token,
"wordpieces_prefix": wordpieces_prefix
}
super().__init__(tokenizer, parameters)
@staticmethod
def from_file(vocab: str, **kwargs):
vocab = WordPiece.read_file(vocab)
return RoBertWordPieceTokenizer(vocab, **kwargs)
def train(
self,
files: Union[str, List[str]],
vocab_size: int = 150000,
min_frequency: int = 2,
limit_alphabet: int = 1000,
initial_alphabet: List[str] = [],
special_tokens: List[Union[str, AddedToken]] = [
"[PAD]",
"[UNK]",
"[CLS]",
"[SEP]",
"[MASK]",
],
show_progress: bool = True,
wordpieces_prefix: str = "##",
):
"""Train the model using the given files"""
trainer = trainers.WordPieceTrainer(
vocab_size=vocab_size,
min_frequency=min_frequency,
limit_alphabet=limit_alphabet,
initial_alphabet=initial_alphabet,
special_tokens=special_tokens,
show_progress=show_progress,
continuing_subword_prefix=wordpieces_prefix,
)
if isinstance(files, str):
files = [files]
# end if
self._tokenizer.train(files, trainer=trainer)
class RoBertPreTrainedTokenizer(PreTrainedTokenizer):
"""Use this class with the `transformers` library.
The following should be enforced:
- the `RoBertWordPieceTokenizer`, which is the underlying tokenizer,
is case sensitive, so the use of `do_lower_case` is not tested
- `save_pretrained` does not work with custom/Python tokenizers
- this tokenizer cannot be pushed to the HuggingFace hub."""
vocab_files_names = {
'RoBertWordPieceTokenizer': os.path.join(os.path.dirname(__file__), 'model', 'vocab.txt')
}
def __init__(self, *init_inputs, **kwargs):
if 'name_or_path' in kwargs:
# When called from RoBertPreTrainedTokenizer.from_pretrained(vocab.txt)
self._ro_wordpiece_tokenizer = \
RoBertWordPieceTokenizer.from_file(
vocab=kwargs['name_or_path'])
else:
self._ro_wordpiece_tokenizer = RoBertWordPieceTokenizer.from_file(
vocab=RoBertPreTrainedTokenizer.vocab_files_names['RoBertWordPieceTokenizer'])
super().__init__(
unk_token=self._ro_wordpiece_tokenizer._parameters['unk_token'],
sep_token=self._ro_wordpiece_tokenizer._parameters['sep_token'],
pad_token=self._ro_wordpiece_tokenizer._parameters['pad_token'],
cls_token=self._ro_wordpiece_tokenizer._parameters['cls_token'],
mask_token=self._ro_wordpiece_tokenizer._parameters['mask_token'],
**kwargs)
@property
def vocab_size(self) -> int:
"""
`int`: Size of the base vocabulary (without externally added new tokens).
"""
return self._ro_wordpiece_tokenizer.get_vocab_size(with_added_tokens=True)
def get_vocab(self) -> Dict[str, int]:
return self._ro_wordpiece_tokenizer.get_vocab(with_added_tokens=True)
def _tokenize(self, text, **kwargs):
return self._ro_wordpiece_tokenizer.encode(sequence=text,
is_pretokenized=False,
add_special_tokens=False).tokens
def _convert_token_to_id(self, token):
return self._ro_wordpiece_tokenizer.token_to_id(token=token)
def _convert_id_to_token(self, index: int) -> str:
return self._ro_wordpiece_tokenizer.id_to_token(id=index)
if __name__ == '__main__':
if len(sys.argv) != 2:
print('Usage: python3 ro_wordpiece.py <folder with .txt files>', file=sys.stderr, flush=True)
exit(1)
# end if
corola_folder = sys.argv[1]
corola_files = []
# Training files have to be:
# 1. Already normalized with the RomanianNormalizer
# 2. Already tokenized with the RomanianPreTokenizer
# (tokens are obtained by pre-tokenizing with the TrainingPreTokenizer)
for txt in os.listdir(path=corola_folder):
if txt.endswith('.txt'):
corola_files.append(os.path.join(corola_folder, txt))
# end if
# end for
tokenizer = RoBertWordPieceTokenizer(train_mode=True)
# After inspecting the CoRoLa vocabulary, these are the best values.
tokenizer.train(files=corola_files, vocab_size=500_000, min_frequency=5)
tokenizer.save_model(directory='model')
# Bug: save_model() saves some duplicate tokens...
vocab_file_in = os.path.join('model', 'vocab.txt')
vocab_file_out = os.path.join('model', 'vocab2.txt')
vocab_terms = set()
with open(vocab_file_out, mode='w', encoding='utf-8') as f:
with open(vocab_file_in, mode='r', encoding='utf-8') as ff:
for line in ff:
term = line.strip()
if term not in vocab_terms:
print(term, file=f, end='\n')
vocab_terms.add(term)
else:
print(f'vocab.txt term [{term}] is duplicated', file=sys.stderr, flush=True)
# end if
# end for
# end with
# end with
os.remove(path=vocab_file_in)
os.rename(src=vocab_file_out, dst=vocab_file_in)