-
Notifications
You must be signed in to change notification settings - Fork 1
Sources
Garrett Long edited this page Jun 14, 2020
·
3 revisions
- Guide to convolution: https://arxiv.org/pdf/1603.07285.pdf
- Beginner's guide to GANs: https://pathmind.com/wiki/generative-adversarial-network-gan
- Architecture of a GAN: https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781789136678/1/ch01lvl1sec12/the-detailed-architecture-of-a-gan
- Guide to the Generator: https://developers.google.com/machine-learning/gan/generator
- Feature scaling: https://en.wikipedia.org/wiki/Feature_scaling
- DCGAN (TensorFlow): https://www.tensorflow.org/tutorials/generative/dcgan
- DCGAN (arXiv): https://arxiv.org/pdf/1511.06434.pdf
- DCGAN (Stanford) (the main DCGAN source I used): http://stanford.edu/class/ee367/Winter2017/yan_wang_ee367_win17_report.pdf
- FCGAN: https://arxiv.org/pdf/1905.02417.pdf
- Identity mapping (how I learned residuals): https://arxiv.org/pdf/1603.05027.pdf
- Deep Residual Learning (how I learned residuals part 2): https://arxiv.org/pdf/1512.03385.pdf
- Convolutional backpropagation: https://medium.com/@pavisj/convolutions-and-backpropagations-46026a8f5d2c
- Extra info on partial convolution: https://arxiv.org/pdf/1804.07723.pdf
- Partial convolution based padding: https://arxiv.org/pdf/1811.11718.pdf
- Info on checkerboard artifacts: https://distill.pub/2016/deconv-checkerboard/
- Wasserstein GAN: https://arxiv.org/pdf/1701.07875.pdf
- Wasserstein GAN tutorial: https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/
- Wasserstein loss tutorial: https://machinelearningmastery.com/how-to-implement-wasserstein-loss-for-generative-adversarial-networks/