Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Extract gil management functions to separate header #2845

Merged
merged 1 commit into from
Feb 23, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -117,6 +117,7 @@ set(PYBIND11_HEADERS
include/pybind11/eigen.h
include/pybind11/embed.h
include/pybind11/eval.h
include/pybind11/gil.h
include/pybind11/iostream.h
include/pybind11/functional.h
include/pybind11/numpy.h
Expand Down
193 changes: 193 additions & 0 deletions include/pybind11/gil.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
/*
pybind11/gil.h: RAII helpers for managing the GIL

Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>

All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/

#pragma once

#include "detail/common.h"
#include "detail/internals.h"

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)


PYBIND11_NAMESPACE_BEGIN(detail)

// forward declarations
PyThreadState *get_thread_state_unchecked();

PYBIND11_NAMESPACE_END(detail)


#if defined(WITH_THREAD) && !defined(PYPY_VERSION)

/* The functions below essentially reproduce the PyGILState_* API using a RAII
* pattern, but there are a few important differences:
*
* 1. When acquiring the GIL from an non-main thread during the finalization
* phase, the GILState API blindly terminates the calling thread, which
* is often not what is wanted. This API does not do this.
*
* 2. The gil_scoped_release function can optionally cut the relationship
* of a PyThreadState and its associated thread, which allows moving it to
* another thread (this is a fairly rare/advanced use case).
*
* 3. The reference count of an acquired thread state can be controlled. This
* can be handy to prevent cases where callbacks issued from an external
* thread would otherwise constantly construct and destroy thread state data
* structures.
*
* See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
* example which uses features 2 and 3 to migrate the Python thread of
* execution to another thread (to run the event loop on the original thread,
* in this case).
*/

class gil_scoped_acquire {
public:
PYBIND11_NOINLINE gil_scoped_acquire() {
auto const &internals = detail::get_internals();
tstate = (PyThreadState *) PYBIND11_TLS_GET_VALUE(internals.tstate);

if (!tstate) {
/* Check if the GIL was acquired using the PyGILState_* API instead (e.g. if
calling from a Python thread). Since we use a different key, this ensures
we don't create a new thread state and deadlock in PyEval_AcquireThread
below. Note we don't save this state with internals.tstate, since we don't
create it we would fail to clear it (its reference count should be > 0). */
tstate = PyGILState_GetThisThreadState();
}

if (!tstate) {
tstate = PyThreadState_New(internals.istate);
#if !defined(NDEBUG)
if (!tstate)
pybind11_fail("scoped_acquire: could not create thread state!");
#endif
tstate->gilstate_counter = 0;
PYBIND11_TLS_REPLACE_VALUE(internals.tstate, tstate);
} else {
release = detail::get_thread_state_unchecked() != tstate;
}

if (release) {
PyEval_AcquireThread(tstate);
}

inc_ref();
}

void inc_ref() {
++tstate->gilstate_counter;
}

PYBIND11_NOINLINE void dec_ref() {
--tstate->gilstate_counter;
#if !defined(NDEBUG)
if (detail::get_thread_state_unchecked() != tstate)
pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
if (tstate->gilstate_counter < 0)
pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
#endif
if (tstate->gilstate_counter == 0) {
#if !defined(NDEBUG)
if (!release)
pybind11_fail("scoped_acquire::dec_ref(): internal error!");
#endif
PyThreadState_Clear(tstate);
if (active)
PyThreadState_DeleteCurrent();
PYBIND11_TLS_DELETE_VALUE(detail::get_internals().tstate);
release = false;
}
}

/// This method will disable the PyThreadState_DeleteCurrent call and the
/// GIL won't be acquired. This method should be used if the interpreter
/// could be shutting down when this is called, as thread deletion is not
/// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
/// protect subsequent code.
PYBIND11_NOINLINE void disarm() {
active = false;
}

PYBIND11_NOINLINE ~gil_scoped_acquire() {
dec_ref();
if (release)
PyEval_SaveThread();
}
private:
PyThreadState *tstate = nullptr;
bool release = true;
bool active = true;
};

class gil_scoped_release {
public:
explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
// `get_internals()` must be called here unconditionally in order to initialize
// `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an
// initialization race could occur as multiple threads try `gil_scoped_acquire`.
const auto &internals = detail::get_internals();
tstate = PyEval_SaveThread();
if (disassoc) {
auto key = internals.tstate;
PYBIND11_TLS_DELETE_VALUE(key);
}
}

/// This method will disable the PyThreadState_DeleteCurrent call and the
/// GIL won't be acquired. This method should be used if the interpreter
/// could be shutting down when this is called, as thread deletion is not
/// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
/// protect subsequent code.
PYBIND11_NOINLINE void disarm() {
active = false;
}

~gil_scoped_release() {
if (!tstate)
return;
// `PyEval_RestoreThread()` should not be called if runtime is finalizing
if (active)
PyEval_RestoreThread(tstate);
if (disassoc) {
auto key = detail::get_internals().tstate;
PYBIND11_TLS_REPLACE_VALUE(key, tstate);
}
}
private:
PyThreadState *tstate;
bool disassoc;
bool active = true;
};
#elif defined(PYPY_VERSION)
class gil_scoped_acquire {
PyGILState_STATE state;
public:
gil_scoped_acquire() { state = PyGILState_Ensure(); }
~gil_scoped_acquire() { PyGILState_Release(state); }
void disarm() {}
};

class gil_scoped_release {
PyThreadState *state;
public:
gil_scoped_release() { state = PyEval_SaveThread(); }
~gil_scoped_release() { PyEval_RestoreThread(state); }
void disarm() {}
};
#else
class gil_scoped_acquire {
void disarm() {}
};
class gil_scoped_release {
void disarm() {}
};
#endif

PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
168 changes: 1 addition & 167 deletions include/pybind11/pybind11.h
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@
#endif

#include "attr.h"
#include "gil.h"
#include "options.h"
#include "detail/class.h"
#include "detail/init.h"
Expand Down Expand Up @@ -2091,173 +2092,6 @@ void print(Args &&...args) {
detail::print(c.args(), c.kwargs());
}

#if defined(WITH_THREAD) && !defined(PYPY_VERSION)

/* The functions below essentially reproduce the PyGILState_* API using a RAII
* pattern, but there are a few important differences:
*
* 1. When acquiring the GIL from an non-main thread during the finalization
* phase, the GILState API blindly terminates the calling thread, which
* is often not what is wanted. This API does not do this.
*
* 2. The gil_scoped_release function can optionally cut the relationship
* of a PyThreadState and its associated thread, which allows moving it to
* another thread (this is a fairly rare/advanced use case).
*
* 3. The reference count of an acquired thread state can be controlled. This
* can be handy to prevent cases where callbacks issued from an external
* thread would otherwise constantly construct and destroy thread state data
* structures.
*
* See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an
* example which uses features 2 and 3 to migrate the Python thread of
* execution to another thread (to run the event loop on the original thread,
* in this case).
*/

class gil_scoped_acquire {
public:
PYBIND11_NOINLINE gil_scoped_acquire() {
auto const &internals = detail::get_internals();
tstate = (PyThreadState *) PYBIND11_TLS_GET_VALUE(internals.tstate);

if (!tstate) {
/* Check if the GIL was acquired using the PyGILState_* API instead (e.g. if
calling from a Python thread). Since we use a different key, this ensures
we don't create a new thread state and deadlock in PyEval_AcquireThread
below. Note we don't save this state with internals.tstate, since we don't
create it we would fail to clear it (its reference count should be > 0). */
tstate = PyGILState_GetThisThreadState();
}

if (!tstate) {
tstate = PyThreadState_New(internals.istate);
#if !defined(NDEBUG)
if (!tstate)
pybind11_fail("scoped_acquire: could not create thread state!");
#endif
tstate->gilstate_counter = 0;
PYBIND11_TLS_REPLACE_VALUE(internals.tstate, tstate);
} else {
release = detail::get_thread_state_unchecked() != tstate;
}

if (release) {
PyEval_AcquireThread(tstate);
}

inc_ref();
}

void inc_ref() {
++tstate->gilstate_counter;
}

PYBIND11_NOINLINE void dec_ref() {
--tstate->gilstate_counter;
#if !defined(NDEBUG)
if (detail::get_thread_state_unchecked() != tstate)
pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!");
if (tstate->gilstate_counter < 0)
pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!");
#endif
if (tstate->gilstate_counter == 0) {
#if !defined(NDEBUG)
if (!release)
pybind11_fail("scoped_acquire::dec_ref(): internal error!");
#endif
PyThreadState_Clear(tstate);
if (active)
PyThreadState_DeleteCurrent();
PYBIND11_TLS_DELETE_VALUE(detail::get_internals().tstate);
release = false;
}
}

/// This method will disable the PyThreadState_DeleteCurrent call and the
/// GIL won't be acquired. This method should be used if the interpreter
/// could be shutting down when this is called, as thread deletion is not
/// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
/// protect subsequent code.
PYBIND11_NOINLINE void disarm() {
active = false;
}

PYBIND11_NOINLINE ~gil_scoped_acquire() {
dec_ref();
if (release)
PyEval_SaveThread();
}
private:
PyThreadState *tstate = nullptr;
bool release = true;
bool active = true;
};

class gil_scoped_release {
public:
explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) {
// `get_internals()` must be called here unconditionally in order to initialize
// `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an
// initialization race could occur as multiple threads try `gil_scoped_acquire`.
const auto &internals = detail::get_internals();
tstate = PyEval_SaveThread();
if (disassoc) {
auto key = internals.tstate;
PYBIND11_TLS_DELETE_VALUE(key);
}
}

/// This method will disable the PyThreadState_DeleteCurrent call and the
/// GIL won't be acquired. This method should be used if the interpreter
/// could be shutting down when this is called, as thread deletion is not
/// allowed during shutdown. Check _Py_IsFinalizing() on Python 3.7+, and
/// protect subsequent code.
PYBIND11_NOINLINE void disarm() {
active = false;
}

~gil_scoped_release() {
if (!tstate)
return;
// `PyEval_RestoreThread()` should not be called if runtime is finalizing
if (active)
PyEval_RestoreThread(tstate);
if (disassoc) {
auto key = detail::get_internals().tstate;
PYBIND11_TLS_REPLACE_VALUE(key, tstate);
}
}
private:
PyThreadState *tstate;
bool disassoc;
bool active = true;
};
#elif defined(PYPY_VERSION)
class gil_scoped_acquire {
PyGILState_STATE state;
public:
gil_scoped_acquire() { state = PyGILState_Ensure(); }
~gil_scoped_acquire() { PyGILState_Release(state); }
void disarm() {}
};

class gil_scoped_release {
PyThreadState *state;
public:
gil_scoped_release() { state = PyEval_SaveThread(); }
~gil_scoped_release() { PyEval_RestoreThread(state); }
void disarm() {}
};
#else
class gil_scoped_acquire {
void disarm() {}
};
class gil_scoped_release {
void disarm() {}
};
#endif

error_already_set::~error_already_set() {
if (m_type) {
gil_scoped_acquire gil;
Expand Down
1 change: 1 addition & 0 deletions tests/extra_python_package/test_files.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
"include/pybind11/embed.h",
"include/pybind11/eval.h",
"include/pybind11/functional.h",
"include/pybind11/gil.h",
"include/pybind11/iostream.h",
"include/pybind11/numpy.h",
"include/pybind11/operators.h",
Expand Down