Skip to content

pierre-delaunay/Handwritten-Arabic-Character-Recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 

Repository files navigation

[Kaggle] Handwritten Arabic Character Recognition

Master 2 MIAGE
Méthodes Informatiques Appliquées à la Gestion des Entreprises
UE : FST (Fouille de Données Statistiques)
University of Rennes 1 - France
Author : Pierre Delaunay
Contact : pierre.delaunay@etudiant.univ-rennes1.fr

Results & Ranking

The best entry (using LeNet v5 described below) scored an accuracy of 99.50% on the test set given by Kaggle.

Model Train Accuracy (%) Validation Accuracy (%) Final Score (%)
LeNet-5 98.09 96.48 99.50

Model

ConvNet --> Pool --> ConvNet --> Pool --> ConvNet --> (Flatten) --> FullyConnected --> Softmax

epochs - 100 loss - 0.0509 train_accuracy - 0.9809 val_loss - 0.0955 val_accuracy - 0.9648

References

LeCun et al., Gradient-based learning applied to document recognition (1998)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published