Skip to content

EasyFuse is a pipeline for accurate fusion gene detection from RNA-seq data.

License

Notifications You must be signed in to change notification settings

p-levy/EasyFuse

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EasyFuse

GitHub release (latest SemVer) Docker Image Version (latest semver) License

EasyFuse is a pipeline to detect fusion transcripts from RNA-seq data with high accuracy. EasyFuse uses five fusion gene detection tools, STAR-Fusion, InFusion, MapSplice2, Fusioncatcher, and SoapFuse along with a powerful read filtering strategy, stringent re-quantification of supporting reads and machine learning for highly accurate predictions.

We recommend using EasyFuse with the Docker container.

Usage with Docker

Download the image

The Docker image can be downloaded from dockerhub using the following command:

docker pull tronbioinformatics/easyfuse:1.3.4

Download reference data

Before running EasyFuse the following reference annotation data needs to be downloaded (~92 GB).

# Download reference archive
wget ftp://easyfuse.tron-mainz.de/easyfuse_ref_v2.tar.gz
wget ftp://easyfuse.tron-mainz.de/easyfuse_ref_v2.tar.gz.md5

# Check MD5 sums for consistency
md5sum -c easyfuse_ref_v2.tar.gz.md5 easyfuse_ref_v2.tar.gz

# Extract reference archive
tar xvfz easyfuse_ref_v2.tar.gz

Run EasyFuse

EasyFuse will require three folders:

  • The input data folder containing FASTQ files, in this example /path/to/input_data.
  • The reference data folder, in this example /path/to/easyfuse_ref
  • The output folder, in this example /path/to/output

Now EasyFuse can be started by mapping the input data, references and output folders.

docker run \
  --name easyfuse_container \
  -v </path/to/easyfuse_ref>:/ref \
  -v </path/to/data>:/data \
  -v </path/to/output>:/output \
  --rm \
  -it easyfuse:1.3.4 \
  python /code/easyfuse-1.3.4/processing.py -i /data -o /output

The output can be found in </path/to/output>/results/. The Output format is described in the wiki page EasyFuse Output

Custom Installation

The EasyFuse pipeline depends on multiple external fusion prediction tools and other dependencies. For example:

The custom installation of EasyFuse is described in the EasyFuse Wiki

About

EasyFuse is a pipeline for accurate fusion gene detection from RNA-seq data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 95.2%
  • R 4.1%
  • Other 0.7%