Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Backport 2.x] Minor performance improvments in KNNQueryBuilder #2531

Open
wants to merge 1 commit into
base: 2.x
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 39 additions & 39 deletions src/main/java/org/opensearch/knn/index/query/KNNQueryBuilder.java
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@
import lombok.AllArgsConstructor;
import lombok.Getter;
import lombok.extern.log4j.Log4j2;
import org.apache.commons.lang.StringUtils;
import org.apache.lucene.search.MatchNoDocsQuery;
import org.apache.lucene.search.Query;
import org.opensearch.common.ValidationException;
Expand All @@ -24,6 +23,7 @@
import org.opensearch.index.query.QueryRewriteContext;
import org.opensearch.index.query.QueryShardContext;
import org.opensearch.knn.index.engine.KNNMethodConfigContext;
import org.opensearch.knn.index.engine.KNNMethodContext;
import org.opensearch.knn.index.engine.model.QueryContext;
import org.opensearch.knn.index.engine.qframe.QuantizationConfig;
import org.opensearch.knn.index.mapper.KNNMappingConfig;
Expand All @@ -47,7 +47,6 @@
import java.util.Locale;
import java.util.Map;
import java.util.Objects;
import java.util.concurrent.atomic.AtomicReference;

import static org.opensearch.knn.common.KNNConstants.EXPAND_NESTED;
import static org.opensearch.knn.common.KNNConstants.MAX_DISTANCE;
Expand Down Expand Up @@ -393,40 +392,12 @@ protected Query doToQuery(QueryShardContext context) {
}
KNNVectorFieldType knnVectorFieldType = (KNNVectorFieldType) mappedFieldType;
KNNMappingConfig knnMappingConfig = knnVectorFieldType.getKnnMappingConfig();
final AtomicReference<QueryConfigFromMapping> queryConfigFromMapping = new AtomicReference<>();
int fieldDimension = knnMappingConfig.getDimension();
knnMappingConfig.getKnnMethodContext()
.ifPresentOrElse(
knnMethodContext -> queryConfigFromMapping.set(
new QueryConfigFromMapping(
knnMethodContext.getKnnEngine(),
knnMethodContext.getMethodComponentContext(),
knnMethodContext.getSpaceType(),
knnVectorFieldType.getVectorDataType()
)
),
() -> knnMappingConfig.getModelId().ifPresentOrElse(modelId -> {
ModelMetadata modelMetadata = getModelMetadataForField(modelId);
queryConfigFromMapping.set(
new QueryConfigFromMapping(
modelMetadata.getKnnEngine(),
modelMetadata.getMethodComponentContext(),
modelMetadata.getSpaceType(),
modelMetadata.getVectorDataType()
)
);
},
() -> {
throw new IllegalArgumentException(
String.format(Locale.ROOT, "Field '%s' is not built for ANN search.", this.fieldName)
);
}
)
);
KNNEngine knnEngine = queryConfigFromMapping.get().getKnnEngine();
MethodComponentContext methodComponentContext = queryConfigFromMapping.get().getMethodComponentContext();
SpaceType spaceType = queryConfigFromMapping.get().getSpaceType();
VectorDataType vectorDataType = queryConfigFromMapping.get().getVectorDataType();
QueryConfigFromMapping queryConfigFromMapping = getQueryConfig(knnMappingConfig, knnVectorFieldType);

KNNEngine knnEngine = queryConfigFromMapping.getKnnEngine();
MethodComponentContext methodComponentContext = queryConfigFromMapping.getMethodComponentContext();
SpaceType spaceType = queryConfigFromMapping.getSpaceType();
VectorDataType vectorDataType = queryConfigFromMapping.getVectorDataType();
RescoreContext processedRescoreContext = knnVectorFieldType.resolveRescoreContext(rescoreContext);
knnVectorFieldType.transformQueryVector(vector);

Expand All @@ -435,7 +406,7 @@ protected Query doToQuery(QueryShardContext context) {

// This could be null in the case of when a model did not have serialized methodComponent information
final String method = methodComponentContext != null ? methodComponentContext.getName() : null;
if (StringUtils.isNotBlank(method)) {
if (method != null && !method.isBlank()) {
final KNNLibrarySearchContext engineSpecificMethodContext = knnEngine.getKNNLibrarySearchContext(method);
QueryContext queryContext = new QueryContext(vectorQueryType);
ValidationException validationException = validateParameters(
Expand Down Expand Up @@ -494,9 +465,13 @@ protected Query doToQuery(QueryShardContext context) {
}

int vectorLength = VectorDataType.BINARY == vectorDataType ? vector.length * Byte.SIZE : vector.length;
if (fieldDimension != vectorLength) {
if (knnMappingConfig.getDimension() != vectorLength) {
throw new IllegalArgumentException(
String.format("Query vector has invalid dimension: %d. Dimension should be: %d", vectorLength, fieldDimension)
String.format(
"Query vector has invalid dimension: %d. Dimension should be: %d",
vectorLength,
knnMappingConfig.getDimension()
)
);
}

Expand Down Expand Up @@ -572,6 +547,31 @@ protected Query doToQuery(QueryShardContext context) {
throw new IllegalArgumentException(String.format(Locale.ROOT, "[%s] requires k or distance or score to be set", NAME));
}

private QueryConfigFromMapping getQueryConfig(final KNNMappingConfig knnMappingConfig, final KNNVectorFieldType knnVectorFieldType) {

if (knnMappingConfig.getKnnMethodContext().isPresent()) {
KNNMethodContext knnMethodContext = knnMappingConfig.getKnnMethodContext().get();
return new QueryConfigFromMapping(
knnMethodContext.getKnnEngine(),
knnMethodContext.getMethodComponentContext(),
knnMethodContext.getSpaceType(),
knnVectorFieldType.getVectorDataType()
);
}

if (knnMappingConfig.getModelId().isPresent()) {
ModelMetadata modelMetadata = getModelMetadataForField(knnMappingConfig.getModelId().get());
return new QueryConfigFromMapping(
modelMetadata.getKnnEngine(),
modelMetadata.getMethodComponentContext(),
modelMetadata.getSpaceType(),
modelMetadata.getVectorDataType()
);
}

throw new IllegalArgumentException(String.format(Locale.ROOT, "Field '%s' is not built for ANN search.", this.fieldName));
}

private ModelMetadata getModelMetadataForField(String modelId) {
ModelMetadata modelMetadata = modelDao.getMetadata(modelId);
if (!ModelUtil.isModelCreated(modelMetadata)) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ public static Query create(CreateQueryRequest createQueryRequest) {
requestEfSearch = (Integer) methodParameters.get(METHOD_PARAMETER_EF_SEARCH);
}
int luceneK = requestEfSearch == null ? k : Math.max(k, requestEfSearch);
log.debug(String.format("Creating Lucene k-NN query for index: %s \"\", field: %s \"\", k: %d", indexName, fieldName, k));
log.debug("Creating Lucene k-NN query for index: {}, field:{}, k: {}", indexName, fieldName, k);
switch (vectorDataType) {
case BYTE:
case BINARY:
Expand Down
Loading