Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix rule extraction to handle constant factors #870

Merged
merged 7 commits into from
Dec 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 10 additions & 8 deletions docs/src/usage/analysis.md
Original file line number Diff line number Diff line change
Expand Up @@ -393,8 +393,8 @@ median outcome temporal variability:
```julia
# Find Time Series Clusters
s_tac = ADRIA.metrics.scenario_total_cover(rs)
num_clusters = 6
clusters = ADRIA.analysis.cluster_scenarios(s_tac, num_clusters)
n_clusters = 6
clusters = ADRIA.analysis.cluster_scenarios(s_tac, n_clusters)

# Target scenarios
target_clusters = ADRIA.analysis.target_clusters(clusters, s_tac)
Expand All @@ -405,18 +405,20 @@ scenario, it is possible to use a Rule Induction algorithm (SIRUS) and plot each
rule as a scatter graph:

```julia
# Select only desired features
fields_iv = ADRIA.component_params(rs, [Intervention, CriteriaWeights]).fieldname
scenarios_iv = scens[:, fields_iv]
# Select features of interest
foi = ADRIA.component_params(rs, [Intervention, SeedCriteriaWeights]).fieldname

# Use SIRUS algorithm to extract rules
# Use SIRUS algorithm to extract rules.
max_rules = 10
rules_iv = ADRIA.analysis.cluster_rules(target_clusters, scenarios_iv, max_rules)
rules_iv = ADRIA.analysis.cluster_rules(
rs, target_clusters, scens, foi, max_rules; remove_duplicates=true
)


# Plot scatters for each rule highlighting the area selected them
rules_scatter_fig = ADRIA.viz.rules_scatter(
rs,
scenarios_iv,
scens,
target_clusters,
rules_iv;
fig_opts=fig_opts,
Expand Down
41 changes: 33 additions & 8 deletions src/analysis/rule_extraction.jl
Original file line number Diff line number Diff line change
Expand Up @@ -109,16 +109,18 @@ function print_rules(rules::Vector{Rule{Vector{Vector},Vector{Float64}}})::Nothi
end

"""
cluster_rules(clusters::Vector{T}, X::DataFrame, max_rules::T; seed::Int64=123, remove_duplicates::Bool=true, kwargs...)::Vector{Rule{Vector{Vector},Vector{Float64}}} where {T<:Int64}
cluster_rules(clusters::Union{BitVector,Vector{Bool}}, X::DataFrame, max_rules::T; seed::Int64=123, remove_duplicates::Bool=true, kwargs...)::Vector{Rule{Vector{Vector},Vector{Float64}}} where {T<:Int64}
cluster_rules(result_set::ResultSet, clusters::Vector{T}, scenarios::DataFrame, factors::Vector{Symbol}, max_rules::T; seed::Int64=123, remove_duplicates::Bool=true, kwargs...)::Vector{Rule{Vector{Vector},Vector{Float64}}} where {T<:Int64}
cluster_rules(result_set::ResultSet, clusters::Union{BitVector,Vector{Bool}}, scenarios::DataFrame, factors::Vector{Symbol}, max_rules::T; seed::Int64=123, remove_duplicates::Bool=true, kwargs...)::Vector{Rule{Vector{Vector},Vector{Float64}}} where {T<:Int64}

Use SIRUS package to extract rules from time series clusters based on some summary metric
(default is median). More information about the keyword arguments accepeted can be found in
MLJ's doc (https://juliaai.github.io/MLJ.jl/dev/models/StableRulesClassifier_SIRUS/).

# Arguments
- `result_set` : ResultSet.
- `clusters` : Vector of cluster indexes for each scenario outcome.
- `X` : Features to be used as input by SIRUS.
- `scenarios` : Scenarios DataFrame.
- `factors` : Vector of factors of interest.
- `max_rules` : Maximum number of rules, to be used as input by SIRUS.
- `seed` : Seed to be used by RGN. Defaults to 123.
- `remove_duplicates` : If true, duplicate rules will be removed from resulting ruleset. In
Expand All @@ -139,9 +141,26 @@ A StableRules object (implemented by SIRUS).
https://doi.org//10.1214/20-EJS1792
"""
function cluster_rules(
clusters::Vector{T}, X::DataFrame, max_rules::T;
seed::Int64=123, remove_duplicates::Bool=true, kwargs...
result_set::ResultSet,
clusters::Vector{T},
scenarios::DataFrame,
factors::Vector{Symbol},
max_rules::T;
seed::Int64=123,
remove_duplicates::Bool=true,
kwargs...
)::Vector{Rule{Vector{Vector},Vector{Float64}}} where {T<:Int64}
ms = ADRIA.model_spec(result_set)

variable_factors_filter::BitVector = .!ms[ms.fieldname .∈ [factors], :is_constant]
variable_factors::Vector{Symbol} = factors[variable_factors_filter]

if isempty(variable_factors)
throw(ArgumentError("Factors of interest cannot be constant"))
end

X = scenarios[:, variable_factors]

# Set seed and Random Number Generator
rng = StableRNG(seed)

Expand All @@ -166,11 +185,17 @@ function cluster_rules(
end
end
function cluster_rules(
clusters::Union{BitVector,Vector{Bool}}, X::DataFrame, max_rules::T;
seed::Int64=123, remove_duplicates::Bool=true, kwargs...
result_set::ResultSet,
clusters::Union{BitVector,Vector{Bool}},
scenarios::DataFrame,
factors::Vector{Symbol},
max_rules::T;
seed::Int64=123,
remove_duplicates::Bool=true,
kwargs...
)::Vector{Rule{Vector{Vector},Vector{Float64}}} where {T<:Int64}
return cluster_rules(
convert.(Int64, clusters), X, max_rules;
result_set, convert.(Int64, clusters), scenarios, factors, max_rules;
seed=seed, remove_duplicates=remove_duplicates, kwargs...
)
end
Expand Down
10 changes: 5 additions & 5 deletions test/analysis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -243,23 +243,23 @@ function test_rs_w_fig(rs::ADRIA.ResultSet, scens::ADRIA.DataFrame)
ADRIA.component_params(
rs, [Intervention, FogCriteriaWeights, SeedCriteriaWeights]
).fieldname
scenarios_iv = scens[:, fields_iv]

# Use SIRUS algorithm to extract rules

max_rules = 10
rules_iv = ADRIA.analysis.cluster_rules(
target_clusters, scenarios_iv, max_rules; remove_duplicates=true
rs, target_clusters, scens, fields_iv, max_rules; remove_duplicates=true
)
rules_iv_duplicates = ADRIA.analysis.cluster_rules(
target_clusters, scenarios_iv, max_rules; remove_duplicates=false
rs, target_clusters, scens, fields_iv, max_rules; remove_duplicates=false
)
ADRIA.analysis.print_rules(rules_iv)
ADRIA.analysis.print_rules(rules_iv_duplicates)

# Plot scatters for each rule highlighting the area selected them
rules_scatter_fig = ADRIA.viz.rules_scatter(
rs,
scenarios_iv,
scens,
target_clusters,
rules_iv;
fig_opts=fig_opts,
Expand All @@ -268,7 +268,7 @@ function test_rs_w_fig(rs::ADRIA.ResultSet, scens::ADRIA.DataFrame)

ADRIA.viz.rules_scatter(
rs,
scenarios_iv,
scens,
target_clusters,
rules_iv_duplicates;
fig_opts=fig_opts,
Expand Down
Loading