-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
executable file
·142 lines (118 loc) · 5.63 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse
import random
import warnings
import collections
import numpy as np
import torch
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from learning_by_sorting.utils.dist_utils import init_distributed_mode, is_main_process, get_rank
from learning_by_sorting.utils.parse_config import ConfigParser
from learning_by_sorting.trainer import SSLTrainer
import learning_by_sorting.dataloader as module_dataloader
import learning_by_sorting.models.encoder as module_encoder
import learning_by_sorting.evaluators as module_evaluators
from sacred import Experiment
from neptunecontrib.monitoring.sacred import NeptuneObserver
ex = Experiment('train', save_git_info=False)
@ex.main
def train():
if config['seed'] is not None:
# fix random seeds for reproducibility
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
seed = config['seed'] + get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
else:
torch.backends.cudnn.benchmark = True
args = config.args
# create model
print("=> creating model", flush=True)
encoder = config.initialize('encoder', module_encoder)
print(encoder)
if args.distributed:
# Apply SyncBN
encoder = torch.nn.SyncBatchNorm.convert_sync_batchnorm(encoder)
torch.cuda.set_device(args.gpu)
encoder.cuda(args.gpu)
encoder = torch.nn.parallel.DistributedDataParallel(encoder, device_ids=[args.gpu])
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
encoder.cuda(args.gpu)
else:
device = torch.device(args.device)
encoder.to(device)
if isinstance(config['valid_dataloader'], list):
valid_dataloader_sampler = [config.initialize('valid_dataloader', module_dataloader, index=i, distributed=args.distributed)
for i in range(len(config['valid_dataloader']))]
else:
valid_dataloader_sampler = config.initialize('valid_dataloader', module_dataloader, distributed=args.distributed)
if isinstance(config['evaluator'], list):
evaluator = [config.initialize('evaluator', module_evaluators, index=i, distributed=args.distributed)
for i in range(len(config['evaluator']))]
else:
evaluator = config.initialize('evaluator', module_dataloader, distributed=args.distributed)
trainer = SSLTrainer(encoder=encoder,
projection=None,
loss=None,
optimizer=None,
lr_scheduler=None,
config=config,
train_data_loader=None,
train_data_sampler=None,
gpu=args.gpu,
valid_dataloader_sampler=valid_dataloader_sampler,
evaluator=evaluator,
scheduler_update='iter',
writer=ex if is_main_process() else None,
is_main_trainer=is_main_process(),
init_val=True,
resume_only_encoder=True,
epochs=0,
mixed_precision=False,
save_latest=False,
)
trainer.train()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-c', '--config', default=None, type=str, help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str, help='path to latest checkpoint (default: None)')
parser.add_argument('-n', '--neptune', action='store_true', help='whether to observe (neptune)')
parser.add_argument('--name', default=None, type=str, help='optional: specify experiment name (default: None)')
parser.add_argument('--distributed', default=False, action='store_true')
parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist-url', default='env://', help='url used to set up distributed training')
parser.add_argument('--device', default='cuda')
parser.add_argument('--gpu', default=None, type=int, help='GPU id to use.')
# custom cli options to modify configuration from default values given in json file
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target')
options = [
CustomArgs(['--epochs'], type=int, target=('trainer', 'epochs')),
CustomArgs(['--init_val'], type=int, target=('trainer', 'init_val')),
]
config = ConfigParser(parser, options)
ex.add_config(config.config)
args = config.args
init_distributed_mode(args=args)
if not args.distributed:
if args.device == 'cuda' and args.gpu is None:
args.gpu = 0
args = config.args
print(f"=> running {args.config}", flush=True)
if args.neptune and is_main_process():
# delete this error if you have added your own neptune credentials neptune.ai
raise ValueError
ex.observers.append(NeptuneObserver(
project_name="",
api_token="",
source_extensions=['train.py', 'eval.py', 'learning_by_sorting/**/*.py', 'configs/**/*.yaml', 'configs/**/*.yml']))
ex.run()