Skip to content

Commit

Permalink
Update test_egnn.py
Browse files Browse the repository at this point in the history
  • Loading branch information
manosth authored Jul 13, 2024
1 parent d3c5dd9 commit 3fcdd52
Showing 1 changed file with 0 additions and 66 deletions.
66 changes: 0 additions & 66 deletions test_egnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,60 +29,12 @@
sns.set_context("paper")
sns.set(font_scale=2)
cmap = plt.get_cmap("twilight")
# cmap_t = plt.get_cmap("turbo")
# cmap = plt.get_cmap("hsv")
color_plot = sns.cubehelix_palette(4, reverse=True, rot=-0.2)
from matplotlib import cm, rc

rc("text", usetex=True)
rc("text.latex", preamble=r"\usepackage{amsmath}")


def zeromean(X, mean=None, std=None):
"Expects data in NxCxWxH."
if mean is None:
mean = X.mean(axis=(0, 2, 3))
std = X.std(axis=(0, 2, 3))
std = torch.ones(std.shape)

X = torchvision.transforms.Normalize(mean, std)(X)
return X, mean, std


def standardize(X, mean=None, std=None):
"Expects data in NxCxWxH."
if mean is None:
mean = X.mean(axis=(0, 2, 3))
std = X.std(axis=(0, 2, 3))

X = torchvision.transforms.Normalize(mean, std)(X)
return X, mean, std


def standardize_y(Y, mean=None, std=None):
"Expects data in Nx1."
if mean is None:
mean = Y.min()
std = Y.max() - Y.min()

Y = (Y - mean) / std
return Y, mean, std


def whiten(X, zca=None, mean=None, eps=1e-8):
"Expects data in NxCxWxH."
os = X.shape
X = X.reshape(os[0], -1)

if zca is None:
mean = X.mean(dim=0)
cov = np.cov(X, rowvar=False)
U, S, V = np.linalg.svd(cov)
zca = np.dot(U, np.dot(np.diag(1.0 / np.sqrt(S + eps)), U.T))
X = torch.Tensor(np.dot(X - mean, zca.T).reshape(os))
return X, zca, mean


def lattice_nbr(grid_size):
"""dxd edge list (periodic)"""
edg = set()
Expand Down Expand Up @@ -124,7 +76,6 @@ def main():

### Data loading
data = np.load("data_n=10000.npy", allow_pickle=True)
# data = np.load("/Users/manos/data/gauge/data_n=10000.npy", allow_pickle=True)
X, Y = data.item()["x"], data.item()["y"]

tr_idx = np.random.choice(X.shape[0], int(0.8 * X.shape[0]), replace=False)
Expand All @@ -139,22 +90,6 @@ def main():
X_te = torch.Tensor(X_te).view(-1, 1, grid_size, grid_size)
Y_te = torch.Tensor(Y_te).view(-1, 1)

if data_norm == "standard":
X_tr, mean, std = standardize(X_tr)
X_te, _, _ = standardize(X_te, mean, std)
elif data_norm == "zeromean":
X_tr, mean, std = zeromean(X_tr)
X_te, _, _ = zeromean(X_te, mean, std)
elif data_norm == "whiten":
X_tr, mean, std = standardize(X_tr)
X_te, _, _ = standardize(X_te, mean, std)

X_tr, zca, mean = whiten(X_tr)
X_te, _, _ = whiten(X_te, zca, mean)
elif data_norm == "y":
Y_tr, mean, std = standardize_y(Y_tr)
Y_te, _, _ = standardize_y(Y_te, mean, std)

train_dl = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(X_tr, Y_tr),
batch_size=batch_size,
Expand Down Expand Up @@ -196,7 +131,6 @@ def main():
with torch.no_grad():
net_loss = 0.0
n_total = 0
# for idx, (x, y) in enumerate(train_dl):
for idx, (x, y) in enumerate(test_dl):
x, y = x.to(device), y.to(device)
batch_size_t = x.shape[0]
Expand Down

0 comments on commit 3fcdd52

Please sign in to comment.