Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GenAI Conversational Search #9

Merged
merged 2 commits into from
Mar 29, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions src/genai/conversation.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv

load_dotenv()
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks


def get_vector_store(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")


def get_conversational_chain():

prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n

Answer:
"""

model = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.3)

prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)

return chain



def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")

new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)

chain = get_conversational_chain()


response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True)

print(response)
st.write("Reply: ", response["output_text"])