-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathbert_main2.py
335 lines (293 loc) · 15 KB
/
bert_main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import argparse
from collections import Counter
import code
import os
import logging
import random
from tqdm import tqdm, trange
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from transformers import AdamW, WarmupLinearSchedule
from transformers import BertConfig, BertForSequenceClassification, BertTokenizer
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers.data.processors.utils import DataProcessor, InputExample
import numpy as np
import pandas as pd
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import matthews_corrcoef, f1_score
logger = logging.getLogger(__name__)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def simple_accuracy(preds, labels):
return (preds == labels).mean()
def acc_and_f1(preds, labels):
acc = simple_accuracy(preds, labels)
f1 = f1_score(y_true=labels, y_pred=preds)
return {
"acc": acc,
"f1": f1,
"acc_and_f1": (acc + f1) / 2,
}
def pearson_and_spearman(preds, labels):
pearson_corr = pearsonr(preds, labels)[0]
spearman_corr = spearmanr(preds, labels)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def acc_f1_pea_spea(preds, labels):
acc_f1 = acc_and_f1(preds, labels)
pea_spea = pearson_and_spearman(preds,labels)
return {**acc_f1, **pea_spea}
class FAQProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, 'train.csv'))
def get_dev_examples(self, data_dir):
return self._create_examples(os.path.join(data_dir, 'dev.csv'))
def get_labels(self):
return [0, 1]
def _create_examples(self, path):
df = pd.read_csv(path)
examples = []
titles = [str(t) for t in df['title'].tolist()]
replies = [str(t) for t in df['reply'].tolist()]
labels = df['is_best'].astype('int').tolist()
for i in range(len(labels)):
examples.append(
InputExample(guid=i, text_a=titles[i], text_b=replies[i], label=labels[i]))
return examples
# 训练模型
def train(args, train_dataset, model, optimizer, scheduler, device, tokenizer, loss_file, acc_file):
model.train()
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size)
tr_loss = 0.0
logging_loss = 0.0
global_step = 0
preds = None
out_label_ids = None
epoch_iterator = tqdm(train_dataloader, desc='Iteration')
for step, batch in enumerate(epoch_iterator):
batch_preds = None
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2], 'labels': batch[3]}
outputs = model(**inputs)
loss, logits = outputs[:2]
#if args.gradient_accumulation_steps > 1:
#loss = loss / args.gradient_accumulation_steps
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
tr_loss += loss.item()
logging_loss += loss.item()
#if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
scheduler.step() # update learning rate schedule
model.zero_grad()
global_step += 1
batch_preds = logits.detach().cpu().numpy()
batch_out_label_ids = inputs['labels'].detach().cpu().numpy()
if preds is None:
preds = batch_preds
else:
preds = np.append(preds, batch_preds, axis=0)
if out_label_ids is None:
out_label_ids = batch_out_label_ids
else:
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
#print('loss value: {}, loss per batch:{}'.format(loss, loss/args.train_batch_size))
if global_step % 100 == 0:
#total_loss = tr_loss / (global_step * args.train_batch_size)
# print("iteration: {}, loss: {}".format(global_step, total_loss))
with open(loss_file, 'a+') as writer:
writer.write("iteration: {}, lr: {}, loss: {}\n".format(global_step, scheduler.get_lr()[0], logging_loss/(global_step*args.train_batch_size)))
logging_loss = 0.0
total_preds = np.argmax(preds, axis=1)
results = acc_f1_pea_spea(total_preds, out_label_ids)
# code.interact(local=locals())
with open(acc_file, 'a+') as acc_writer:
acc_writer.write('iteration: {}, lr: {}, loss: {}, results:{}\n'.format(global_step, scheduler.get_lr()[0], logging_loss/(global_step*args.train_batch_size), results))
print(results)
print('\n')
preds = None
out_label_ids=None
print('\n total loss:{}\n'.format(tr_loss/global_step))
def evaluate(args, eval_dataset, model, device, tokenizer):
model.eval()
eval_sampler = RandomSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.train_batch_size)
tr_loss = 0.0
global_step = 0
preds = None
out_label_ids = None
epoch_iterator = tqdm(eval_dataloader, desc='Iteration')
with torch.no_grad():
for step, batch in enumerate(epoch_iterator):
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0], 'attention_mask': batch[1], 'token_type_ids': batch[2], 'labels': batch[3]}
# if step == 0:
# print(inputs)
outputs = model(**inputs)
loss, logits = outputs[:2]
batch_preds = None
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
tr_loss += loss.item()
global_step += 1
batch_preds = logits.detach().cpu().numpy()
batch_out_label_ids = inputs['labels'].detach().cpu().numpy()
if preds is None:
preds = batch_preds
else:
preds = np.append(preds, batch_preds, axis=0)
if out_label_ids is None:
out_label_ids = batch_out_label_ids
else:
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
total_loss = tr_loss / (global_step * args.train_batch_size)
print("iteration: {}, loss: {}".format(global_step, total_loss))
preds = np.argmax(preds, axis=1)
results = acc_f1_pea_spea(preds, out_label_ids)
print(total_loss, results)
return (total_loss,results)
def load_and_cache_examples(args, tokenizer, evaluate=False):
processor = FAQProcessor()
cached_features_file = "cached_{}_bert".format("dev" if evaluate else 'train')
if os.path.exists(cached_features_file):
features = torch.load(cached_features_file)
else:
label_list = processor.get_labels()
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir)
# print(len(examples))
features = convert_examples_to_features(
examples=examples,
tokenizer=tokenizer,
max_length=args.max_seq_length,
label_list=label_list,
output_mode='classification',
pad_on_left=False,
pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
pad_token_segment_id=0)
logger.info('saving features into cached file %s', cached_features_file)
torch.save(features, cached_features_file)
'''
InputExample:
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
InputFeatures:
self.input_ids = input_ids
self.attention_mask = attention_mask
self.token_type_ids = token_type_ids
self.label = label
features.append(
InputFeatures(input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
label=label))
'''
## convert tensors and build dataset
all_input_ids = torch.tensor([f.input_ids for f in features],dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
all_label = torch.tensor([f.label for f in features], dtype=torch.long)
dataset = TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label)
return dataset
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument("--data_dir", default=None, type=str, required=True,
help="directory containing the data")
parser.add_argument("--output_dir", default="BERT_output", type=str, required=True,
help="The model output save dir")
parser.add_argument("--do_train", action='store_true', help="Whether to run training.")
parser.add_argument("--do_eval", action='store_true', help="Whether to run eval on the dev set.")
parser.add_argument("--evaluate_during_training", action='store_true',
help="Run evaluation during training at each logging step.")
parser.add_argument("--max_seq_length", default=100, type=int, required=False,
help="maximum sequence length for BERT sequence classificatio")
parser.add_argument("--max_steps", default=-1, type=int,
help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
parser.add_argument("--warmup_steps", default=0, type=int,
help="Linear warmup over warmup_steps.")
parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--num_train_epochs", default=3, type=int,
help="Total number of training epochs to perform.")
parser.add_argument("--learning_rate", default=1e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--weight_decay", default=0.0, type=float,
help="Weight deay if we apply some.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--adam_epsilon", default=1e-8, type=float,
help="Epsilon for Adam optimizer.")
parser.add_argument("--train_batch_size", default=64, type=int, required=False,
help="batch size for train and eval")
parser.add_argument('--logging_steps', type=int, default=50,
help="Log every X updates steps.")
parser.add_argument('--log_path', default=None, type=str, required=False)
args = parser.parse_args()
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
set_seed(args)
## get train and dev data
print('loading dataset...')
processor = FAQProcessor()
label_list = processor.get_labels()
num_labels = len(label_list)
config = BertConfig.from_pretrained('bert-base-chinese', cache_dir='./cache_down', num_labels=num_labels)
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese', cache_dir='./cache_down')
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False)
eval_dataset = load_and_cache_examples(args, tokenizer, evaluate=True)
## 构建模型
model = BertForSequenceClassification.from_pretrained("./cache_down/pytorch_model.bin", config=config)
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(args.device)
# print(model)
## 损失函数
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
t_total = len(train_dataset) // args.gradient_accumulation_steps * args.num_train_epochs * args.train_batch_size
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total)
## training
logger.info('*****Running training*******')
logger.info(' Num examples = %d', len(train_dataset))
logger.info(' Gradient Accumulation steps = %d', args.gradient_accumulation_steps)
best_acc_f1 = 0
if not os.path.exists(os.path.join(args.output_dir, args.log_path)):
os.makedirs(os.path.join(args.output_dir, args.log_path))
else:
for file in os.listdir(os.path.join(args.output_dir, args.log_path)):
os.remove(os.path.join(args.output_dir, args.log_path, file))
train_loss_file = os.path.join(args.output_dir, args.log_path, 'train_loss_file.txt')
train_acc_file = os.path.join(args.output_dir, args.log_path, 'train_acc_file.txt')
eval_loss_file = os.path.join(args.output_dir, args.log_path, 'eval_loss_file.txt')
for epoch in range(args.num_train_epochs):
logger.info(' Num epochs = %d', epoch)
train(args, train_dataset, model, optimizer, scheduler, args.device, tokenizer,train_loss_file,train_acc_file)
results = evaluate(args, eval_dataset, model, args.device, tokenizer)
with open(eval_loss_file, 'a+') as eval_writer:
eval_writer.write('epoch:{}, lr: {}, eval_loss:{}, result: {}\n'.format(epoch, scheduler.get_lr()[0],results[0], results[1]))
if results[1]['acc_and_f1'] > best_acc_f1:
best_acc_f1 = results[1]['acc_and_f1']
print('saving best model')
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(os.path.join(args.output_dir, args.log_path))
tokenizer.save_pretrained(os.path.join(args.output_dir, args.log_path))
torch.save(args, os.path.join(args.output_dir, args.log_path, 'training_args_bert.bin'))
if __name__== "__main__":
main()