z=\sum_{n_{1}=L_{2}}^{L_{2}}\left\{n_{1}\le L_{a}:\theta_{1append}\left[n_{1}\right],\theta_{2append}\left[n_{1}-L_{a}\right]\right\}
\theta_{1append}=\sum_{n=L}^{L}\left\{n\le L_{r}:\theta_{1}\left[n\right],\theta_{2}\left[n-L_{r}\right]\right\}
\theta_{2append}=\sum_{n=L}^{L}\left\{n\le L_{r}:\theta_{2}\left[n\right],\theta_{1}\left[n-L_{r}\right]\right\}
\theta_{1}=\left[a\left\{-20<x<-19\right\},b\left\{-19<x<-18\right\},c\left\{-18<x<-17\right\},b\left\{-17<x<-16\right\},d\left\{-16<x<-15\right\},e_{0}\left\{-15<x<-14\right\},f\left\{-14<x<-13\right\},a\left\{-13<x<-12\right\}\right]
\theta_{2}=\left[b\left\{-12<x<-11\right\},d\left\{-11<x<-10\right\},e_{0}\left\{-10<x<-9\right\},f\left\{-9<x<-8\right\}\right]
L=\left[1,...,2\left(L_{r}+L_{r2}\right)\right]
L_{2}=\left[1,...,L_{a}+L_{a2}\right]
L_{r}=\operatorname{length}\left(\theta_{1}\right)
L_{r2}=\operatorname{length}\left(\theta_{2}\right)
L_{a}=\operatorname{length}\left(\theta_{1append}\right)
L_{a2}=\operatorname{length}\left(\theta_{2append}\right)
a=-8x^{0}
b=4x^{0}
c=7.5x^{0}
d=1x^{0}
e_{0}=-1x^{0}
f=-4x^{0}
X: -20, -8
Y: -10 10
Turn off every graph except 'z'.
1000\left(\frac{1}{\sqrt{\left(\left(x\right)+7000\right)}}\right)\left\{-6990\le x\le-5500\right\}
\frac{1}{2000}\left(\left(\frac{1}{6}x+800\right)^{2}+\left(y-175\right)^{2}\right)=9
y-1.5=\frac{1}{4}\left(\left|-2\left(\frac{x}{1}+3000\right)\right|\right)+20\left\{-3540\le x\le-2400\right\}
-1000\left(\left|\sin y\right|\right)-1000\left\{0\le y\le360\right\}=x
\frac{1}{100}x^{2}+\left(\left(y-150\right)-\sqrt[3]{x^{2}}\right)^{2}=5000