Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

WIP "Faster" grpo trainer #371

Draft
wants to merge 16 commits into
base: main
Choose a base branch
from
67 changes: 67 additions & 0 deletions recipes/SmolLM2-1.7B-Instruct/grpo/config_fast_grpo.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Model arguments
model_name_or_path: HuggingFaceTB/SmolLM2-1.7B-Instruct
model_revision: main
torch_dtype: bfloat16
attn_implementation: flash_attention_2
# Data training arguments
dataset_name: open-r1/OpenR1-Math-cn_k12-86k
dataset_configs:
- all
dataset_train_split: train
num_processes: 8
ddp_find_unused_parameters: false
# GRPO trainer config
use_vllm: true
vllm_device: auto
vllm_gpu_memory_utilization: 0.8
bf16: true
do_eval: false
eval_strategy: "no"
gradient_accumulation_steps: 16
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
hub_model_id: open-r1/SmolLM2-1.7B-Instruct-GRPO-v00.00
hub_strategy: every_save
learning_rate: 1.0e-05
log_level: info
logging_steps: 1
logging_strategy: steps
lr_scheduler_type: cosine
max_prompt_length: 1024
max_completion_length: 2048
max_steps: -1
num_train_epochs: 0.1
num_generations: 2
output_dir: data/open-r1/SmolLM2-1.7B-Instruct-GRPO-v00.00
overwrite_output_dir: true
per_device_eval_batch_size: 4
per_device_train_batch_size: 4
push_to_hub: true
beta: 0.04

reward_funcs:
- accuracy
- format
reward_weights:
- 1.0
- 0.1
use_liger_kernel: true

report_to:
- wandb
wandb_entity: huggingface
wandb_project: open-r1
log_completions: true
seed: 42
warmup_ratio: 0.1

# Saving and eval callbacks
save_strategy: "steps"
save_steps: 100
# callbacks:
# - push_to_hub_revision
# benchmarks:
# - math_500_8k
# - aime24_8k
# - gsm8k_8k
254 changes: 254 additions & 0 deletions scripts/faster_grpo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,254 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import sys
from dataclasses import dataclass, field

import datasets
import torch
import transformers
from datasets import load_dataset
from transformers import set_seed
from transformers.trainer_utils import get_last_checkpoint

from open_r1.configs import GRPOConfig
from open_r1.rewards import (
accuracy_reward,
format_reward,
get_cosine_scaled_reward,
get_repetition_penalty_reward,
len_reward,
reasoning_steps_reward,
)
from open_r1.trainers.faster_grpo_trainer import FastGRPOTrainer, FastGRPOConfig
from open_r1.utils.callbacks import get_callbacks
from open_r1.utils.wandb_logging import init_wandb_training
from trl import GRPOTrainer, ModelConfig, ScriptArguments, TrlParser, get_peft_config


logger = logging.getLogger(__name__)


@dataclass
class GRPOScriptArguments(ScriptArguments):
"""
Script arguments for the GRPO training script.

Args:
reward_funcs (`list[str]`):
List of reward functions. Possible values: 'accuracy', 'format', 'reasoning_steps', 'cosine', 'repetition_penalty', 'length'.
cosine_min_value_wrong (`float`):
Minimum reward for cosine scaling for wrong answers.
cosine_max_value_wrong (`float`):
Maximum reward for cosine scaling for wrong answers.
cosine_min_value_correct (`float`):
Minimum reward for cosine scaling for correct answers.
cosine_max_value_correct (`float`):
Maximum reward for cosine scaling for correct answers.
cosine_max_len (`int`):
Maximum length for cosine scaling.
"""

reward_funcs: list[str] = field(
default_factory=lambda: ["accuracy", "format"],
metadata={
"help": "List of reward functions. Possible values: 'accuracy', 'format', 'reasoning_steps', 'cosine', 'repetition_penalty', 'length'"
},
)
cosine_min_value_wrong: float = field(
default=0.0,
metadata={"help": "Minimum reward for wrong answers"},
)
cosine_max_value_wrong: float = field(
default=-0.5,
metadata={"help": "Maximum reward for wrong answers"},
)
cosine_min_value_correct: float = field(
default=0.5,
metadata={"help": "Minimum reward for correct answers"},
)
cosine_max_value_correct: float = field(
default=1.0,
metadata={"help": "Maximum reward for correct answers"},
)
cosine_max_len: int = field(
default=1000,
metadata={"help": "Maximum length for scaling"},
)

repetition_n_grams: int = field(
default=3,
metadata={"help": "Number of n-grams for repetition penalty reward"},
)
repetition_max_penalty: float = field(
default=-1.0,
metadata={"help": "Maximum (negative) penalty for for repetition penalty reward"},
)


SYSTEM_PROMPT = (
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
"process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>"
)


def main(script_args, training_args, model_args):
# Set seed for reproducibility
set_seed(training_args.seed)

###############
# Setup logging
###############
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()

# Log on each process a small summary
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f" distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Model parameters {model_args}")
logger.info(f"Script parameters {script_args}")
logger.info(f"Training parameters {training_args}")

# Check for last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(f"Checkpoint detected, resuming training at {last_checkpoint=}.")

if "wandb" in training_args.report_to:
init_wandb_training(training_args)

# Load the dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)

# Get reward functions
REWARD_FUNCS_REGISTRY = {
"accuracy": accuracy_reward,
"format": format_reward,
"reasoning_steps": reasoning_steps_reward,
"cosine": get_cosine_scaled_reward(
min_value_wrong=script_args.cosine_min_value_wrong,
max_value_wrong=script_args.cosine_max_value_wrong,
min_value_correct=script_args.cosine_min_value_correct,
max_value_correct=script_args.cosine_max_value_correct,
max_len=script_args.cosine_max_len,
),
"repetition_penalty": get_repetition_penalty_reward(
ngram_size=script_args.repetition_n_grams,
max_penalty=script_args.repetition_max_penalty,
),
"length": len_reward,
}
reward_funcs = [REWARD_FUNCS_REGISTRY[func] for func in script_args.reward_funcs]

# Format into conversation
def make_conversation(example):
return {
"prompt": [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": example["problem"]},
],
}

dataset = dataset.map(make_conversation)
for split in dataset:
if "messages" in dataset[split].column_names:
dataset[split] = dataset[split].remove_columns("messages")

logger.info("*** Initializing model kwargs ***")
torch_dtype = (
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
)
training_args.model_init_kwargs = model_kwargs

#############################
# Initialize the Async GRPO trainer
#############################
trainer = FastGRPOTrainer(
model=model_args.model_name_or_path,
reward_funcs=reward_funcs,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
callbacks=get_callbacks(training_args, model_args),
)

###############
# Training loop
###############
logger.info("*** Train ***")
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
metrics["train_samples"] = len(dataset[script_args.dataset_train_split])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()

##################################
# Save model and create model card
##################################
logger.info("*** Save model ***")
trainer.save_model(training_args.output_dir)
logger.info(f"Model saved to {training_args.output_dir}")

# Save everything else on main process
kwargs = {
"dataset_name": script_args.dataset_name,
"tags": ["open-r1"],
}
if trainer.accelerator.is_main_process:
trainer.create_model_card(**kwargs)
# Restore k,v cache for fast inference
trainer.model.config.use_cache = True
trainer.model.config.save_pretrained(training_args.output_dir)

#############
# push to hub
#############
if training_args.push_to_hub:
logger.info("Pushing to hub...")
trainer.push_to_hub(**kwargs)


if __name__ == "__main__":
parser = TrlParser((GRPOScriptArguments, FastGRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
main(script_args, training_args, model_args)
Loading
Loading