PyTorch DCGAN Tutorial의 Tensorflow implementation 및 한국어 번역.
데이터셋은 Celeb-A Faces dataset 사용.
usage: train.py [-h] [--dataroot DATAROOT] [--workers WORKERS]
[--batch-size BATCH_SIZE] [--image-size IMAGE_SIZE] [--nz NZ]
[--ngf NGF] [--ndf NDF] [--niter NITER] [--lr LR]
[--beta1 BETA1] [--dry-run] [--ngpu NGPU] [--outf OUTF]
[--log-dir LOG_DIR] [--ckpt-dir CKPT_DIR]
[--manual-seed MANUAL_SEED]
optional arguments:
-h, --help show this help message and exit
--dataroot DATAROOT path to dataset (default: data/celeba)
--workers WORKERS number of data loading workers (default: 2)
--batch-size BATCH_SIZE
input batch size (default: 128)
--image-size IMAGE_SIZE
the height / width of the input image to network
(default: 64)
--nz NZ size of the latent z vector (default: 100)
--ngf NGF
--ndf NDF
--niter NITER number of epochs to train for (default: 25)
--lr LR learning rate (default: 0.0002)
--beta1 BETA1 beta1 for adam (default: 0.5)
--dry-run check a single training cycle works (default: False)
--ngpu NGPU number of GPUs to use (default: 1)
--outf OUTF folder to output images (default: samples)
--log-dir LOG_DIR log folder to save training progresses (default: logs)
--ckpt-dir CKPT_DIR checkpoint folder to save model checkpoints (default:
ckpt)
--manual-seed MANUAL_SEED
manual seed (default: None)