-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #49 from choderalab/fix-e3nn-ref-model
Fix e3nn model building
- Loading branch information
Showing
2 changed files
with
90 additions
and
17 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
import pytest | ||
|
||
from e3nn.nn.models.gate_points_2101 import Network | ||
from e3nn.o3 import Irreps | ||
from mtenn.conversion_utils.e3nn import E3NN | ||
|
||
|
||
@pytest.fixture | ||
def e3nn_kwargs(): | ||
return { | ||
"irreps_in": "5x0e+2x1o", | ||
"irreps_hidden": "10x0e+10x0o+1o+1e", | ||
"irreps_out": "0e", | ||
"irreps_node_attr": "0e", | ||
"irreps_edge_attr": Irreps.spherical_harmonics(2), | ||
"layers": 5, | ||
"max_radius": 10, | ||
"number_of_basis": 5, | ||
"radial_layers": 5, | ||
"radial_neurons": 32, | ||
"num_neighbors": 10, | ||
"num_nodes": 100, | ||
"reduce_output": True, | ||
} | ||
|
||
|
||
def test_build_e3nn_directly_kwargs(e3nn_kwargs): | ||
model = E3NN(**e3nn_kwargs) | ||
|
||
# Directly stored parameters | ||
assert model.irreps_in == Irreps(e3nn_kwargs["irreps_in"]) | ||
assert model.irreps_hidden == Irreps(e3nn_kwargs["irreps_hidden"]) | ||
assert model.irreps_out == Irreps(e3nn_kwargs["irreps_out"]) | ||
assert model.irreps_node_attr == Irreps(e3nn_kwargs["irreps_node_attr"]) | ||
assert model.irreps_edge_attr == Irreps(e3nn_kwargs["irreps_edge_attr"]) | ||
assert len(model.layers) == e3nn_kwargs["layers"] + 1 | ||
assert model.max_radius == e3nn_kwargs["max_radius"] | ||
assert model.number_of_basis == e3nn_kwargs["number_of_basis"] | ||
assert model.num_nodes == e3nn_kwargs["num_nodes"] | ||
assert model.reduce_output == e3nn_kwargs["reduce_output"] | ||
|
||
# Indirect ones | ||
conv = model.layers[-1] | ||
assert len(conv.fc.hs) - 2 == e3nn_kwargs["radial_layers"] | ||
assert conv.fc.hs[1] == e3nn_kwargs["radial_neurons"] | ||
assert conv.num_neighbors == e3nn_kwargs["num_neighbors"] | ||
|
||
|
||
def test_build_e3nn_from_e3nn_network(e3nn_kwargs): | ||
ref_model = Network(**e3nn_kwargs) | ||
model = E3NN(model=ref_model) | ||
|
||
# Directly stored parameters | ||
assert model.irreps_in == ref_model.irreps_in | ||
assert model.irreps_hidden == ref_model.irreps_hidden | ||
assert model.irreps_out == ref_model.irreps_out | ||
assert model.irreps_node_attr == ref_model.irreps_node_attr | ||
assert model.irreps_edge_attr == ref_model.irreps_edge_attr | ||
assert len(model.layers) == len(ref_model.layers) | ||
assert model.max_radius == ref_model.max_radius | ||
assert model.number_of_basis == ref_model.number_of_basis | ||
assert model.num_nodes == ref_model.num_nodes | ||
assert model.reduce_output == ref_model.reduce_output | ||
|
||
# Indirect ones | ||
ref_conv = ref_model.layers[-1] | ||
conv = model.layers[-1] | ||
assert len(conv.fc.hs) == len(ref_conv.fc.hs) | ||
assert conv.fc.hs[1] == ref_conv.fc.hs[1] | ||
assert conv.num_neighbors == ref_conv.num_neighbors |