Skip to content

EffiScale: Orchestrated Elasticity Framework for Cloud-native Container Scaling

License

Notifications You must be signed in to change notification settings

ahmadpanah/EffiScale

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EffiScale: Orchestrated Elasticity Framework for Cloud-native Container Scaling

🌟 Overview

EffiScale is a sophisticated, self-adaptive framework for optimizing container scaling in cloud environments. Built on a microservices architecture, it provides intelligent resource management through comprehensive monitoring, analysis, and execution capabilities.

🏗️ Project Structure

  • EffiScale/
    • src/
      • core/ (Core Framework Components)
        • config.py (Configuration Management)
        • exceptions.py (Custom Exceptions)
        • utils.py (Utility Functions)
      • monitoring/ (Monitoring System)
        • collector.py (Metric Collection)
        • metrics.py (Metric Definitions)
        • prometheus.py (Prometheus Integration)
      • analysis/ (Analysis Engine)
        • pattern_analyzer.py
        • threshold_manager.py
        • workload_predictor.py
        • resource_optimizer.py
      • controllers/ (Control System)
        • elastic_controller.py
        • decision_maker.py
        • consensus_manager.py
        • state_manager.py
      • knowledge/ (Knowledge Base)
        • knowledge_base.py
        • knowledge_validator.py
        • pattern_library.py
      • execution/ (Execution Engine)
        • scaling_executor.py
        • container_manager.py
        • rollback_manager.py
      • api/ (API Layer)
        • routes.py
        • models.py
        • validators.py
      • storage/ (Storage Layer)
        • metric_storage.py
        • database.py

🚀 Key Components

Core Framework (src/core/)

  • Configuration management and system bootstrapping
  • Exception handling and error management
  • Utility functions and common operations

Monitoring System (src/monitoring/)

  • Real-time metric collection with Prometheus integration
  • Custom metric definitions and performance monitoring
  • Resource utilization tracking and analysis

Analysis Engine (src/analysis/)

  • Pattern analysis and detection algorithms
  • Dynamic threshold management and adjustment
  • Workload prediction and resource optimization

Control System (src/controllers/)

  • Elastic scaling control mechanisms
  • Intelligent decision making logic
  • Consensus and state management

Knowledge Base (src/knowledge/)

  • Pattern storage and retrieval systems
  • Knowledge validation and verification
  • Pattern library management and updates

Execution Engine (src/execution/)

  • Scaling action execution and coordination
  • Container lifecycle management
  • Rollback mechanism implementation

API Layer (src/api/)

  • RESTful API endpoints
  • Data models and schemas
  • Request/response validation

Storage Layer (src/storage/)

  • Metric data persistence
  • Database operations and management

🛠️ Installation

git clone https://github.com/ahmadpanah/EffiScale.git
pip install -r requirements.txt
docker-compose -f docker/docker-compose.yml build

📋 Basic Usage

from effiscale.core import EffiScale

# Initialize and start EffiScale
effiscale = EffiScale(config_path="config.yaml")
effiscale.start()

⚙️ Configuration Example

monitoring:
  collector:
    interval: 10
    metrics: [cpu_usage, memory_usage, network_io]
analysis:
  thresholds:
    cpu: 80
    memory: 75
  prediction:
    window: 300
    algorithm: "lstm"
execution:
  scaling:
    min_instances: 1
    max_instances: 10
    cooldown: 300

🚢 Docker Commands

docker-compose -f docker/docker-compose.yml up -d
docker-compose -f docker/docker-compose.yml ps
docker-compose -f docker/docker-compose.yml logs -f

🔌 API Endpoints

  • Monitoring
    • GET /api/v1/metrics - Get system metrics
    • GET /api/v1/status - Get system status
  • Control
    • POST /api/v1/scale - Trigger scaling
    • GET /api/v1/decisions - Get scaling decisions
  • Analysis
    • GET /api/v1/patterns - Get scaling patterns
    • POST /api/v1/patterns - Create new pattern

📊 Key Features

  • Intelligent Scaling
    • Predictive scaling capabilities
    • Pattern-based decision making
    • Resource optimization
    • Workload analysis
  • High Availability
    • Fault tolerance mechanisms
    • Automatic recovery procedures
    • State persistence
    • Rollback capabilities
  • Monitoring & Analytics
    • Real-time metric tracking
    • Historical data analysis
    • Pattern recognition
    • Performance monitoring

📝 Documentation

  • Implementation guides: /examples

🤝 Contributing

  1. Fork repository
  2. Create feature branch
  3. Commit changes
  4. Push to branch
  5. Create Pull Request

📄 License

MIT License - see LICENSE

🔄 Roadmap

  • Custom Metric Support
  • Multi-cluster Management
  • Advanced Analytics Dashboard
  • Auto-tuning Capabilities

Contact

About

EffiScale: Orchestrated Elasticity Framework for Cloud-native Container Scaling

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published