V0.2.7-RSB-A3-ImageNet-Weights
A collection of weights and logs for image classification experiments with RSB A3 training setting on ImageNet-1K (download). You can view the training setting in ResNet strikes back and find the full results in MogaNet (Appendix Table A.7). You can download all files from Baidu Cloud (ss3j).
- We train all models for 100 epochs according to the RSB A3 setting on ImageNet-1K. We turn the basic learning in {8e-3, 6e-3} to get better performances.
- The best top-1 accuracy of image classification in the last 10 training epochs is reported for all experiments.
RSB A3 Image Classification on ImageNet-1K
Model | Date | Train / Test | Params (M) | Top-1 (%) | Top-5 (%) | Config | Download |
---|---|---|---|---|---|---|---|
ResNet-50 | CVPR'2016 | 160 / 224 | 26 | 78.1 | 93.8 | config | model | log |
ResNet-101 | CVPR'2016 | 160 / 224 | 45 | 79.9 | 94.9 | config | model | log |
ResNet-152 | CVPR'2016 | 160 / 224 | 60 | 80.7 | 95.2 | config | model | log |
ViT-T | ICLR'2021 | 160 / 224 | 6 | 66.7 | 87.7 | config | model | log |
ViT-S | ICLR'2021 | 160 / 224 | 22 | 73.8 | 91.2 | config | model | log |
ViT-B | ICLR'2021 | 160 / 224 | 87 | 76.0 | 91.8 | config | model | log |
PVT-T | ICCV'2021 | 160 / 224 | 13 | 71.5 | 89.8 | config | model | log |
PVT-S | ICCV'2021 | 160 / 224 | 25 | 72.1 | 90.2 | config | model | log |
Swin-T | ICCV'2021 | 160 / 224 | 28 | 77.7 | 93.7 | config | model | log |
Swin-S | ICCV'2021 | 160 / 224 | 50 | 80.2 | 95.1 | config | model | log |
Swin-B | ICCV'2021 | 160 / 224 | 50 | 80.5 | 95.4 | config | model | log |
LITV2-T | NIPS'2022 | 160 / 224 | 28 | 79.7 | 94.7 | config | model | log |
LITV2-M | NIPS'2022 | 160 / 224 | 49 | 80.5 | 95.2 | config | model | log |
LITV2-B | NIPS'2022 | 160 / 224 | 87 | 81.3 | 95.5 | config | model | log |
ConvMixer-768-d32 | arXiv'2022 | 160 / 224 | 21 | 77.6 | 93.5 | config | model | log |
PoolFormer-S12 | CVPR'2022 | 160 / 224 | 12 | 69.3 | 88.7 | config | model | log |
PoolFormer-S24 | CVPR'2022 | 160 / 224 | 21 | 74.1 | 91.8 | config | model | log |
PoolFormer-S36 | CVPR'2022 | 160 / 224 | 31 | 74.6 | 92.0 | config | model | log |
PoolFormer-M36 | CVPR'2022 | 160 / 224 | 56 | 80.7 | 95.2 | config | model | log |
PoolFormer-M48 | CVPR'2022 | 160 / 224 | 73 | 81.2 | 95.3 | config | model | log |
ConvNeXt-T | CVPR'2022 | 160 / 224 | 29 | 78.8 | 94.2 | config | model | log |
ConvNeXt-S | CVPR'2022 | 160 / 224 | 50 | 81.7 | 95.7 | config | model | log |
ConvNeXt-B | CVPR'2022 | 160 / 224 | 89 | 82.1 | 95.9 | config | model | log |
ConvNeXt-L | CVPR'2022 | 160 / 224 | 189 | 82.8 | 96.0 | config | model | log |
VAN-B0 | arXiv'2022 | 160 / 224 | 4 | 72.6 | 94.2 | config | model | log |
VAN-B2 | arXiv'2022 | 160 / 224 | 27 | 81.0 | 91.5 | config | model | log |
VAN-B3 | arXiv'2022 | 160 / 224 | 45 | 81.9 | 95.7 | config | model | log |
HorNet-T (7×7) | NIPS'2022 | 160 / 224 | 22 | 80.1 | 95.0 | config | model | log |
HorNet-S (7×7) | NIPS'2022 | 160 / 224 | 50 | 81.2 | 95.4 | config | model | log |
MogaNet-XT | arXiv'2022 | 160 / 224 | 3 | 72.8 | 91.3 | config | model | log |
MogaNet-T | arXiv'2022 | 160 / 224 | 5 | 75.4 | 92.6 | config | model | log |
MogaNet-S | arXiv'2022 | 160 / 224 | 25 | 81.1 | 95.5 | config | model | log |
MogaNet-B | arXiv'2022 | 160 / 224 | 44 | 82.2 | 95.9 | config | model | log |
MogaNet-L | arXiv'2022 | 160 / 224 | 83 | 83.2 | 96.4 | config | model | log |