forked from suyeecav/model-targeted-poisoning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
executable file
·367 lines (295 loc) · 12.8 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from __future__ import unicode_literals
from sklearn.datasets import make_classification
# generate some sthnthetic dataset
generate_dataset = make_classification
import os
import json
import numpy as np
import scipy.sparse as sparse
import scipy.io as sio
import pickle
# from utils import load_adult
# Local running
DATA_FOLDER = 'files/data'
OUTPUT_FOLDER = 'files/results'
def safe_makedirs(path):
if not os.path.exists(os.path.dirname(path)):
try:
os.makedirs(os.path.dirname(path))
except OSError as exc:
if exc.errno != errno.EEXIST:
raise
def get_output_mat_path(dataset_name, file_name):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_defense_params.mat' % file_name)
def get_output_dists_path(dataset_name, file_name):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_defense_dists.npz' % file_name)
def get_output_json_path(dataset_name, file_name):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_defense_results.json' % file_name)
def get_attack_npz_filename(dataset_name, epsilon, norm_sq_constraint, percentile):
return '%s_attack_clean-centroid_normc-%s_percentile-%s_epsilon-%s.npz' % (dataset_name, norm_sq_constraint, percentile, epsilon)
def get_attack_npz_path(dataset_name, epsilon, norm_sq_constraint, percentile):
return os.path.join(OUTPUT_FOLDER, 'attack', get_attack_npz_filename(dataset_name, epsilon, norm_sq_constraint, percentile))
def get_target_attack_folder(dataset_name):
return os.path.join(
OUTPUT_FOLDER,
dataset_name)
def get_target_attack_npz_path(dataset_name, epsilon, weight_decay, percentile, label):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_attack_wd-%s_percentile-%s_epsilon-%s_label-%s.npz' % (dataset_name, weight_decay, percentile, epsilon, label))
def get_target_attack_npz_path_sub(dataset_name, epsilon, sub_ind, weight_decay, percentile, label):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_attack_wd-%s_percentile-%s_epsilon-%s_subind-%s_label-%s.npz' % (dataset_name, weight_decay, percentile, epsilon,sub_ind,label))
def get_attack_results_json_path(dataset_name, weight_decay, percentile, label):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_attack_wd-%s_percentile-%s_label-%s_attackresults.json' % (dataset_name, weight_decay, percentile, label))
def get_attack_results_json_path_sub(dataset_name, weight_decay, percentile, subind, label):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_attack_wd-%s_percentile-%s_subind-%s_label-%s_attackresults.json' % (dataset_name, weight_decay, percentile, subind,label))
def get_timed_results_npz_path(dataset_name, weight_decay, percentile, label):
return os.path.join(
OUTPUT_FOLDER,
dataset_name,
'%s_attack_wd-%s_percentile-%s_label-%s_timings.npz' % (dataset_name, weight_decay, percentile, label))
def check_orig_data(X_train, Y_train, X_test, Y_test):
assert X_train.shape[0] == Y_train.shape[0]
assert X_test.shape[0] == Y_test.shape[0]
assert X_train.shape[1] == X_test.shape[1]
assert np.max(Y_train) == 1, 'max of Y_train was %s' % np.max(Y_train)
assert np.min(Y_train) == -1
assert len(set(Y_train)) == 2
assert set(Y_train) == set(Y_test)
def check_poisoned_data(X_train, Y_train, X_poison, Y_poison, X_modified, Y_modified):
assert X_train.shape[1] == X_poison.shape[1]
assert X_train.shape[1] == X_modified.shape[1]
assert X_train.shape[0] + X_poison.shape[0] == X_modified.shape[0]
assert X_train.shape[0] == Y_train.shape[0]
assert X_poison.shape[0] == Y_poison.shape[0]
assert X_modified.shape[0] == Y_modified.shape[0]
assert X_train.shape[0] * X_poison.shape[0] * X_modified.shape[0] > 0
def load_dogfish():
dataset_path = os.path.join(DATA_FOLDER)
train_f = np.load(os.path.join(dataset_path, 'dogfish_900_300_inception_features_train.npz'), allow_pickle = True)
X_train = train_f['inception_features_val']
Y_train = np.array(train_f['labels'] * 2 - 1, dtype=int)
test_f = np.load(os.path.join(dataset_path, 'dogfish_900_300_inception_features_test.npz'))
X_test = test_f['inception_features_val']
Y_test = np.array(test_f['labels'] * 2 - 1, dtype=int)
check_orig_data(X_train, Y_train, X_test, Y_test)
return X_train, Y_train, X_test, Y_test
def load_enron_sparse():
dataset_path = os.path.join(DATA_FOLDER)
f = np.load(os.path.join(dataset_path, 'enron1_processed_sparse.npz'),allow_pickle = True)
X_train = f['X_train'].reshape(1)[0]
Y_train = f['Y_train'] * 2 - 1
X_test = f['X_test'].reshape(1)[0]
Y_test = f['Y_test'] * 2 - 1
assert(sparse.issparse(X_train))
assert(sparse.issparse(X_test))
check_orig_data(X_train, Y_train, X_test, Y_test)
return X_train, Y_train, X_test, Y_test
def load_2d_toy(class_sep = 1.0):
if not os.path.isdir(DATA_FOLDER):
os.mkdir(DATA_FOLDER = 'files/data')
data_fname = DATA_FOLDER + '/class_sep-{}_2d_toy'.format(class_sep)
# generate a dataset with 5000 examples, 3000 for train, 2000 for test
if not os.path.isfile(data_fname):
full_x, full_y = generate_dataset(n_samples = 5000,
n_features=2,
n_informative=2,
n_redundant=0,
n_classes=2,
n_clusters_per_class=2,
flip_y=0.001,
class_sep=class_sep,
random_state=0)
data_full = {}
data_full['full_x'],data_full['full_y'] = full_x,full_y
data_file = open(data_fname, 'wb')
pickle.dump(data_full, data_file,protocol=2)
data_file.close()
else:
data_file = open(data_fname, 'rb')
f = pickle.load(data_file)
full_x,full_y = f['full_x'],f['full_y']
print(full_x[:,1].shape)
print(full_y.shape)
print(full_x[:,1].shape)
print(full_y.shape)
train_samples = 3000
# split between train and test datasets
X_train = full_x[:train_samples]
X_test = full_x[train_samples:]
Y_train = full_y[:train_samples]
Y_test = full_y[train_samples:]
# convert to {-1,1} as class labels
Y_train = 2*Y_train-1
Y_test = 2*Y_test-1
return X_train, Y_train, X_test, Y_test
def load_imdb_sparse():
dataset_path = os.path.join(DATA_FOLDER)
f = np.load(os.path.join(dataset_path, 'imdb_processed_sparse.npz'), allow_pickle = True)
X_train = f['X_train'].reshape(1)[0]
Y_train = f['Y_train'].reshape(-1)
X_test = f['X_test'].reshape(1)[0]
Y_test = f['Y_test'].reshape(-1)
assert(sparse.issparse(X_train))
assert(sparse.issparse(X_test))
check_orig_data(X_train, Y_train, X_test, Y_test)
return X_train, Y_train, X_test, Y_test
def load_adult():
fname = open(DATA_FOLDER+'/adult_data','rb')
adult_all = pickle.load(fname)
X_train = adult_all['X_train']
Y_train = adult_all['y_train']
X_test = adult_all['X_test']
Y_test = adult_all['y_test']
# print(X_train.shape,Y_train.shape,X_test.shape,Y_test.shape)
return X_train, Y_train, X_test, Y_test
def load_dataset(dataset_name,class_sep = 1.0):
if dataset_name == 'imdb':
return load_imdb_sparse()
elif dataset_name == 'enron':
return load_enron_sparse()
elif dataset_name == 'dogfish':
return load_dogfish()
elif dataset_name == 'adult':
return load_adult()
elif dataset_name == '2d_toy':
return load_2d_toy(class_sep=class_sep)
else:
dataset_path = os.path.join(DATA_FOLDER)
f = np.load(os.path.join(dataset_path, '%s_train_test.npz' % dataset_name))
X_train = f['X_train']
Y_train = f['Y_train'].reshape(-1)
X_test = f['X_test']
Y_test = f['Y_test'].reshape(-1)
check_orig_data(X_train, Y_train, X_test, Y_test)
return X_train, Y_train, X_test, Y_test
def load_mnist_17():
return load_dataset('mnist_17')
def load_attack(dataset_name, file_name):
file_root, ext = os.path.splitext(file_name)
if ext == '.mat':
return load_attack_mat(dataset_name, file_name)
elif ext == '.npz':
return load_attack_npz(dataset_name, file_name)
else:
raise ValueError('File extension must be .mat or .npz.')
def load_attack_mat(dataset_name, file_name, take_path=False):
if take_path:
file_path = file_name
else:
file_path = os.path.join(OUTPUT_FOLDER, dataset_name, file_name)
f = sio.loadmat(file_path)
X_poison = f['X_attack_best']
Y_poison = f['y_attack_best'].reshape(-1)
X_train, Y_train, X_test, Y_test = load_dataset(dataset_name)
if not sparse.issparse(X_train):
if sparse.issparse(X_poison):
print('Warning: X_train is not sparse but X_poison is sparse. Densifying X_poison...')
X_poison = X_poison.toarray()
for X in [X_train, X_poison, X_test]:
if sparse.issparse(X): X = X.tocsr()
if sparse.issparse(X_train):
X_modified = sparse.vstack((X_train, X_poison), format='csr')
else:
X_modified = np.concatenate((X_train, X_poison), axis=0)
Y_modified = np.concatenate((Y_train, Y_poison), axis=0)
# Create views into X_modified so that we don't have to keep copies lying around
num_train = np.shape(X_train)[0]
idx_train = slice(0, num_train)
idx_poison = slice(num_train, np.shape(X_modified)[0])
X_train = X_modified[idx_train, :]
Y_train = Y_modified[idx_train]
X_poison = X_modified[idx_poison, :]
Y_poison = Y_modified[idx_poison]
check_orig_data(X_train, Y_train, X_test, Y_test)
check_poisoned_data(X_train, Y_train, X_poison, Y_poison, X_modified, Y_modified)
return X_modified, Y_modified, X_test, Y_test, idx_train, idx_poison
def load_attack_npz(dataset_name, file_name, take_path=False):
if take_path:
file_path = file_name
else:
file_path = os.path.join(OUTPUT_FOLDER, dataset_name, file_name)
f = np.load(file_path)
if 'X_modified' in f:
raise AssertionError
X_modified = f['X_modified']
Y_modified = f['Y_modified']
X_test = f['X_test']
Y_test = f['Y_test']
idx_train = f['idx_train'].reshape(1)[0]
idx_poison = f['idx_poison'].reshape(1)[0]
# Extract sparse array from array wrapper
if dataset_name in ['enron', 'imdb']:
X_modified = X_modified.reshape(1)[0]
X_test = X_test.reshape(1)[0]
X_train = X_modified[idx_train, :]
Y_train = Y_modified[idx_train]
X_poison = X_modified[idx_poison, :]
Y_poison = Y_modified[idx_poison]
# Loading KKT attacks, including targeted ones
elif 'X_poison' in f:
X_poison = f['X_poison']
Y_poison = f['Y_poison']
X_train, Y_train, X_test, Y_test = load_dataset(dataset_name)
if sparse.issparse(X_train):
X_poison = X_poison.reshape(1)[0]
X_modified = sparse.vstack((X_train, X_poison), format='csr')
else:
X_modified = np.concatenate((X_train, X_poison), axis=0)
Y_modified = np.concatenate((Y_train, Y_poison), axis=0)
idx_train = slice(0, X_train.shape[0])
idx_poison = slice(X_train.shape[0], X_modified.shape[0])
if 'idx_to_attack' in f:
idx_to_attack = f['idx_to_attack']
X_test = X_test[idx_to_attack, :]
Y_test = Y_test[idx_to_attack]
Y_modified = Y_modified.astype(np.float32)
Y_test = Y_test.astype(np.float32)
# This is for loading the baselines
else:
raise AssertionError
X_modified = f['poisoned_X_train']
if dataset_name in ['enron', 'imdb']:
try:
X_modified = X_modified.reshape(1)[0]
except:
pass
Y_modified = f['Y_train']
X_train, Y_train, X_test, Y_test = load_dataset(dataset_name)
idx_train = slice(0, X_train.shape[0])
idx_poison = slice(X_train.shape[0], X_modified.shape[0])
if sparse.issparse(X_modified):
assert((X_modified[idx_train, :] - X_train).nnz == 0)
else:
if sparse.issparse(X_train):
X_train = X_train.toarray()
X_test = X_test.toarray()
assert(np.all(np.isclose(X_modified[idx_train, :], X_train)))
assert(np.all(Y_modified[idx_train] == Y_train))
X_poison = X_modified[idx_poison, :]
Y_poison = Y_modified[idx_poison]
check_orig_data(X_train, Y_train, X_test, Y_test)
check_poisoned_data(X_train, Y_train, X_poison, Y_poison, X_modified, Y_modified)
return X_modified, Y_modified, X_test, Y_test, idx_train, idx_poison