Skip to content

Commit

Permalink
Harden the test with dynamic shapes (#3807)
Browse files Browse the repository at this point in the history
  • Loading branch information
wujingyue authored Feb 4, 2025
1 parent aeb38d9 commit 6bd12cf
Showing 1 changed file with 17 additions and 35 deletions.
52 changes: 17 additions & 35 deletions tests/python/test_multidevice.py
Original file line number Diff line number Diff line change
Expand Up @@ -115,19 +115,14 @@ def multidevice_schedule(self):

@pytest.mark.mpi
def test_linear_loop_split(multidevice_test):
class Model(FusionDefinition):
def __init__(self, num_devices, batch, sequence, hidden):
super().__init__()
self._num_devices = num_devices
self._batch = batch
self._sequence = sequence
self._hidden = hidden
d = multidevice_test.size
mesh = nvfuser.DeviceMesh(range(d))

class Model(FusionDefinition):
def definition(self):
d, b, s, e = self._num_devices, self._batch, self._sequence, self._hidden
self.inp = self.define_tensor([b, s, e])
self.weight = self.define_tensor([d * e, e])
self.bias = self.define_tensor([d * e])
self.inp = self.define_tensor([-1, -1, -1])
self.weight = self.define_tensor([-1, -1])
self.bias = self.define_tensor([-1])
self.out = self.ops.linear(self.inp, self.weight, self.bias)
self.add_output(self.out)

Expand All @@ -147,9 +142,6 @@ def multidevice_schedule(self):
self.sched.parallelize(self.out, -3, nvfuser.ParallelType.mesh_x)
self.sched.set_allocation_as_loop(self.out)

d = multidevice_test.size
mesh = nvfuser.DeviceMesh(range(d))

torch.cuda.set_device(multidevice_test.local_rank)

b, s, e = 2, 1024, 768
Expand All @@ -161,7 +153,7 @@ def multidevice_schedule(self):
unsharded_bias_tensor = torch.randn(d * e)
sharded_bias_tensor = multidevice_test.shard_tensor(unsharded_bias_tensor, 0, mesh)

fd = Model(d, b, s, e)
fd = Model()
(out_tensor,) = fd.execute([inp_tensor, sharded_weight_tensor, sharded_bias_tensor])

# [b, s, d*e]
Expand Down Expand Up @@ -229,18 +221,13 @@ def multidevice_schedule(self) -> None:

@pytest.mark.mpi
def test_matmul_loop_split(multidevice_test):
class Model(FusionDefinition):
def __init__(self, num_devices, batch, sequence, hidden):
super().__init__()
self._num_devices = num_devices
self._batch = batch
self._sequence = sequence
self._hidden = hidden
d = multidevice_test.size
mesh = nvfuser.DeviceMesh(range(d))

class Model(FusionDefinition):
def definition(self):
d, b, s, e = self._num_devices, self._batch, self._sequence, self._hidden
self.inp = self.define_tensor([b, s, e])
self.weight = self.define_tensor([e, d * e])
self.inp = self.define_tensor([-1, -1, -1])
self.weight = self.define_tensor([-1, -1])
self.out = self.ops.matmul(self.inp, self.weight)
self.add_output(self.out)

Expand All @@ -259,10 +246,6 @@ def multidevice_schedule(self):
self.sched.parallelize(self.out, -3, nvfuser.ParallelType.mesh_x)
self.sched.set_allocation_as_loop(self.out)

d = multidevice_test.size
mesh = nvfuser.DeviceMesh(range(d))
rank = multidevice_test.rank

torch.cuda.set_device(multidevice_test.local_rank)

b, s, e = 2, 1024, 768
Expand All @@ -272,7 +255,7 @@ def multidevice_schedule(self):
unsharded_weight_tensor, -1, mesh
)

fd = Model(d, b, s, e)
fd = Model()
(out_tensor,) = fd.execute([inp_tensor, sharded_weight_tensor])

# [b, s, d*e]
Expand All @@ -286,16 +269,16 @@ def multidevice_schedule(self):

@pytest.mark.mpi
def test_matmul_allreduce_loop_split(multidevice_test):
d, b, s, e = multidevice_test.size, 1, 4, 8
d = multidevice_test.size
mesh = nvfuser.DeviceMesh(range(d))

class Model(FusionDefinition):
def definition(self) -> None:
self.inp = self.define_tensor(
[b * s, d * e], contiguity=True, dtype=DataType.Half
[-1, -1], contiguity=True, dtype=DataType.Half
)
self.weight = self.define_tensor(
[d * e, e], contiguity=True, dtype=DataType.Half
[-1, -1], contiguity=True, dtype=DataType.Half
)
self.out = self.ops.matmul(self.inp, self.weight)
self.add_output(self.out)
Expand Down Expand Up @@ -323,10 +306,9 @@ def multidevice_schedule(self) -> None:
self.sched._set_device_mesh(self.local_out, mesh)
self.sched.parallelize(self.local_out, -2, nvfuser.ParallelType.mesh_x)

rank = multidevice_test.rank

torch.cuda.set_device(multidevice_test.local_rank)

b, s, e = 1, 4, 8
unsharded_inp = torch.randn(b * s, d * e, dtype=torch.half)
unsharded_weight = torch.randn(d * e, e, dtype=torch.half)
sharded_inp = multidevice_test.shard_tensor(unsharded_inp, -1, mesh)
Expand Down

0 comments on commit 6bd12cf

Please sign in to comment.