Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

ARP metric added #81

Merged
merged 5 commits into from
Jan 23, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Added
- Methods for conversion `Interactions` to raw form and for getting raw interactions from `Dataset` ([#69](https://github.com/MobileTeleSystems/RecTools/pull/69))
- `AvgRecPopularity (Average Recommendation Popularity)` to `metrics` ([#81](https://github.com/MobileTeleSystems/RecTools/pull/81))

### Changed
- Loosened `pandas`, `torch` and `torch-light` versions for `python >= 3.8` ([#58](https://github.com/MobileTeleSystems/RecTools/pull/58))
Expand Down
3 changes: 3 additions & 0 deletions rectools/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
`metrics.MRR`
`metrics.MeanInvUserFreq`
`metrics.IntraListDiversity`
`metrics.AvgRecPopularity`
`metrics.Serendipity`

Tools
Expand All @@ -49,6 +50,7 @@
)
from .diversity import IntraListDiversity
from .novelty import MeanInvUserFreq
from .popularity import AvgRecPopularity
from .ranking import MAP, MRR, NDCG
from .scoring import calc_metrics
from .serendipity import Serendipity
Expand All @@ -64,6 +66,7 @@
"MRR",
"MeanInvUserFreq",
"IntraListDiversity",
"AvgRecPopularity",
"Serendipity",
"calc_metrics",
"PairwiseDistanceCalculator",
Expand Down
157 changes: 157 additions & 0 deletions rectools/metrics/popularity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
# Copyright 2024 MTS (Mobile Telesystems)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Popularity metrics."""

import typing as tp

import pandas as pd

from rectools import Columns
from rectools.metrics.base import MetricAtK
from rectools.utils import select_by_type


class AvgRecPopularity(MetricAtK):
r"""
Average Recommendations Popularity metric.

Calculate the average popularity of the recommended items in each list,
where "popularity" of item is the average number of ratings (interactions)
for this item.

.. math::
ARP@k = \frac{1}{\left|U_{t}\right|}\sum_{u\in U_{t}^{}}\frac{\sum_{i\in L_{u}}\phi (i)}{\left| L_{u} \right |}

where
:math:`\phi (i)` is the number of times item i has been rated in the training set.
:math:`|U_{t}|` is the number of users in the test set.
:math:`L_{u}` is the list of recommended items for user u.

Parameters
----------
k : int
Number of items at the top of recommendations list that will be used to calculate metric.

Examples
--------
>>> reco = pd.DataFrame(
... {
... Columns.User: [1, 1, 2, 2, 2, 3, 3],
... Columns.Item: [1, 2, 3, 1, 2, 3, 2],
... Columns.Rank: [1, 2, 1, 2, 3, 1, 2],
... }
... )
>>> prev_interactions = pd.DataFrame(
... {
... Columns.User: [1, 1, 2, 2, 3, 3],
... Columns.Item: [1, 2, 1, 3, 1, 2],
... }
... )
>>> AvgRecPopularity(k=1).calc_per_user(reco, prev_interactions).values
array([3., 1., 1.])
>>> AvgRecPopularity(k=3).calc_per_user(reco, prev_interactions).values
array([2.5, 2. , 1.5])
"""

def calc(self, reco: pd.DataFrame, prev_interactions: pd.DataFrame) -> float:
"""
Calculate metric value.

Parameters
----------
reco : pd.DataFrame
Recommendations table with columns `Columns.User`, `Columns.Item`, `Columns.Rank`.
prev_interactions : pd.DataFrame
Table with previous user-item interactions,
with columns `Columns.User`, `Columns.Item`.

Returns
-------
float
Value of metric (average between users).
"""
per_user = self.calc_per_user(reco, prev_interactions)
return per_user.mean()

def calc_per_user(
self,
reco: pd.DataFrame,
prev_interactions: pd.DataFrame,
) -> pd.Series:
"""
Calculate metric values for all users.

Parameters
----------
reco : pd.DataFrame
Recommendations table with columns `Columns.User`, `Columns.Item`, `Columns.Rank`.
prev_interactions : pd.DataFrame
Table with previous user-item interactions,
with columns `Columns.User`, `Columns.Item`.

Returns
-------
pd.Series
Values of metric (index - user id, values - metric value for every user).
"""
item_popularity = prev_interactions[Columns.Item].value_counts()
item_popularity.name = "popularity"

reco_k = reco.query(f"{Columns.Rank} <= @self.k")
reco_prepared = reco_k.join(item_popularity, on=Columns.Item, how="left").fillna(0)

arp = reco_prepared.groupby(Columns.User)["popularity"].agg(lambda x: x.sum() / x.count())
return arp


PopularityMetric = AvgRecPopularity


def calc_popularity_metrics(
metrics: tp.Dict[str, PopularityMetric],
reco: pd.DataFrame,
prev_interactions: pd.DataFrame,
) -> tp.Dict[str, float]:
"""
Calculate popularity metrics (only AvgRP now).

Warning: It is not recommended to use this function directly.
Use `calc_metrics` instead.

Parameters
----------
metrics : dict(str -> PopularityMetric)
Dict of metric objects to calculate,
where key is metric name and value is metric object.
reco : pd.DataFrame
Recommendations table with columns `Columns.User`, `Columns.Item`, `Columns.Rank`.
prev_interactions : pd.DataFrame
Table with previous user-item interactions,
with columns `Columns.User`, `Columns.Item`.

Returns
-------
dict(str->float)
Dictionary where keys are the same as keys in `metrics`
and values are metric calculation results.
"""
results = {}

# ARP
pop_metrics: tp.Dict[str, AvgRecPopularity] = select_by_type(metrics, AvgRecPopularity)
for name, metric in pop_metrics.items():
results[name] = metric.calc(reco, prev_interactions)

return results
9 changes: 9 additions & 0 deletions rectools/metrics/scoring.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
from .classification import ClassificationMetric, SimpleClassificationMetric, calc_classification_metrics
from .diversity import DiversityMetric, calc_diversity_metrics
from .novelty import NoveltyMetric, calc_novelty_metrics
from .popularity import PopularityMetric, calc_popularity_metrics
from .ranking import RankingMetric, calc_ranking_metrics
from .serendipity import SerendipityMetric, calc_serendipity_metrics

Expand Down Expand Up @@ -131,6 +132,14 @@ def calc_metrics( # noqa # pylint: disable=too-many-branches
novelty_values = calc_novelty_metrics(novelty_metrics, reco, prev_interactions)
results.update(novelty_values)

# Popularity
popularity_metrics = select_by_type(metrics, PopularityMetric)
if popularity_metrics:
if prev_interactions is None:
raise ValueError("For calculating popularity metrics it's necessary to set 'prev_interactions'")
popularity_values = calc_popularity_metrics(popularity_metrics, reco, prev_interactions)
results.update(popularity_values)

# Diversity
diversity_metrics = select_by_type(metrics, DiversityMetric)
if diversity_metrics:
Expand Down
106 changes: 106 additions & 0 deletions tests/metrics/test_popularity.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Copyright 2022 MTS (Mobile Telesystems)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import pandas as pd
import pytest

from rectools import Columns
from rectools.metrics.popularity import AvgRecPopularity


class TestAvgRecPopularity:
@pytest.fixture
def interactions(self) -> pd.DataFrame:
interactions = pd.DataFrame(
[["u1", "i1"], ["u1", "i2"], ["u2", "i1"], ["u2", "i3"], ["u3", "i1"], ["u3", "i2"]],
columns=[Columns.User, Columns.Item],
)
return interactions

@pytest.fixture
def recommendations(self) -> pd.DataFrame:
recommendations = pd.DataFrame(
[
["u1", "i1", 1],
["u1", "i2", 2],
["u2", "i3", 1],
["u2", "i1", 2],
["u2", "i2", 3],
["u3", "i3", 1],
["u3", "i2", 2],
],
columns=[Columns.User, Columns.Item, Columns.Rank],
)
return recommendations

@pytest.mark.parametrize(
"k,expected",
(
(1, pd.Series(index=["u1", "u2", "u3"], data=[3.0, 1.0, 1.0])),
(3, pd.Series(index=["u1", "u2", "u3"], data=[2.5, 2.0, 1.5])),
),
)
def test_correct_arp_values(
self, recommendations: pd.DataFrame, interactions: pd.DataFrame, k: int, expected: pd.Series
) -> None:
arp = AvgRecPopularity(k)

actual = arp.calc_per_user(recommendations, interactions)
pd.testing.assert_series_equal(actual, expected, check_names=False)

actual_mean = arp.calc(recommendations, interactions)
assert actual_mean == expected.mean()

def test_when_no_interactions(
self,
recommendations: pd.DataFrame,
) -> None:
expected = pd.Series(index=recommendations[Columns.User].unique(), data=[0.0, 0.0, 0.0])
empty_interactions = pd.DataFrame(columns=[Columns.User, Columns.Item], dtype=int)
arp = AvgRecPopularity(k=2)

actual = arp.calc_per_user(recommendations, empty_interactions)
pd.testing.assert_series_equal(actual, expected, check_names=False)

actual_mean = arp.calc(recommendations, empty_interactions)
assert actual_mean == expected.mean()

@pytest.mark.parametrize(
"k,expected",
(
(1, pd.Series(index=["u1", "u2", "u3"], data=[3.0, 1.0, 1.0])),
(3, pd.Series(index=["u1", "u2", "u3"], data=[2.5, np.divide(4, 3), 1.5])),
),
)
def test_when_new_item_in_reco(self, interactions: pd.DataFrame, k: int, expected: pd.Series) -> None:
reco = pd.DataFrame(
[
["u1", "i1", 1],
["u1", "i2", 2],
["u2", "i3", 1],
["u2", "i1", 2],
["u2", "i4", 3],
["u3", "i3", 1],
["u3", "i2", 2],
],
columns=[Columns.User, Columns.Item, Columns.Rank],
)
arp = AvgRecPopularity(k)

actual = arp.calc_per_user(reco, interactions)
pd.testing.assert_series_equal(actual, expected, check_names=False)

actual_mean = arp.calc(reco, interactions)
assert actual_mean == expected.mean()
4 changes: 4 additions & 0 deletions tests/metrics/test_scoring.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
MRR,
NDCG,
Accuracy,
AvgRecPopularity,
IntraListDiversity,
MeanInvUserFreq,
PairwiseHammingDistanceCalculator,
Expand Down Expand Up @@ -76,6 +77,7 @@ def test_success(self) -> None:
"ndcg@1": NDCG(k=1, log_base=3),
"mrr@1": MRR(k=1),
"miuf": MeanInvUserFreq(k=3),
"arp": AvgRecPopularity(k=2),
"ild": IntraListDiversity(k=3, distance_calculator=self.calculator),
"serendipity": Serendipity(k=3),
"custom": MetricAtK(k=1),
Expand All @@ -92,6 +94,7 @@ def test_success(self) -> None:
"ndcg@1": 0.25,
"mrr@1": 0.25,
"miuf": 0.125,
"arp": 2.75,
"ild": 0.25,
"serendipity": 0,
}
Expand All @@ -103,6 +106,7 @@ def test_success(self) -> None:
(Precision(k=1), ["reco"]),
(MAP(k=1), ["reco"]),
(MeanInvUserFreq(k=1), ["reco"]),
(AvgRecPopularity(k=1), ["reco"]),
(Serendipity(k=1), ["reco"]),
(Serendipity(k=1), ["reco", "interactions"]),
(Serendipity(k=1), ["reco", "interactions", "prev_interactions"]),
Expand Down