This repository hosts the code and data associated with the paper "Quantum Many-Body Physics Calculations with Large Language Models."
- Requirement:
openai
version 0.28.1. - Configuration: Place your OpenAI API key in a
.env
file in the root directory, using the formatOPENAI_API_KEY=your_key_here
. - Running the Code: Navigate to the directory named after the arXiv number of interest and execute
python ../utils.py ../Prompt_template.md {arxiv_number}
, replacing{arxiv_number}
with the actual arXiv number.
Each arXiv paper is represented by a directory containing:
{arxiv_number}.pdf
: The arXiv paper.{arxiv_number}.tex
: LaTeX source for the paper.{arxiv_number}_SM.pdf
: Supplemental material.{arxiv_number}_SM.tex
: LaTeX source for the supplemental material.{arxiv_number}.yaml
: Configuration file with placeholders, extraction, execution results, and scoring details.{arxiv_number}_auto.md
: Execution output.{arxiv_number}_extractor.md
: Extraction output.{arxiv_number}_extractor.ipynb
: Extraction helper functions.{arxiv_number}_execution.ipynb
: Execution helper functions.{arxiv_number}_score_prompt.ipynb
: Scoring and correction helper functions.
Located in printout
:
{arxiv_number}_execution.pdf
: Human-readable execution result.{arxiv_number}_extraction.pdf
: Human-readable extraction result.{arxiv_number}_execution.tex
: LaTeX source for execution result.{arxiv_number}_extraction.tex
: LaTeX source for extraction result.{arxiv_number}_execution.md
: Markdown for execution result.{arxiv_number}_extraction.md
: Markdown for extraction result.
Rubrics.md
: Scoring rubrics.Naming.yaml
: Mapping of the task names used inPrompt_template.md
and in the paper for readability.processed_oneshot_df_reverified_scores_renamed.yaml
: Results of one-shot extraction.Prompt_template.md
: Prompt templates.Task_type.yaml
: Task types.
Haining Pan, Nayantara Mudur, Will Taranto, Maria Tikhanovskaya, Subhashini Venugopalan, Yasaman Bahri, Michael P. Brenner, Eun-Ah Kim