Skip to content

Abstracts.202X.TS

Fabian edited this page Sep 12, 2021 · 1 revision

Team semantics for dependence logic

by TBD

Abstract

TBD

Notes

  • The partially ordered/branching/Henkin quantifier

    ( ∀x ∃y ∀u ∃v ) φ ( x , y , u , v , z‾ ) ⟺ ∃f ∃g ∀x ∀u φ ( x , f ( x ) , u , g ( u ) , z‾ )

    can be expressed using a dependence atom as

    ( ∀x ∃y ∀u ∃v ) φ ( x , y , u , v , z‾ ) ⟺ ∀x ∃y ∀u ∃v ( = ( z‾ , u , v ) ∧ φ ( x , f ( x ) , u , g ( u ) , z‾ ) )
  • Dependence logic has the same expressive power as existential second order logic.

References

  1. Jouko Väänänen. 2007. Dependence Logic — A New Approach to Independence Friendly Logic.
  2. Leon Henkin. 1961. Some Remarks on Infinitely Long Formulas.
  3. Juha Kontinen and Jouko Väänänen. 2009. On Definability in Dependence Logic.
Clone this wiki locally