Dependency
R == 4.4.1
(Rstudio will prompt you to install the missing packages.)
-
aricode
-
R.utils
-
R.matlab
-
evclust (optional)
Data
INPUT: views x n x d list
Datasets can be found at Link1, Link2 and Link3.
Just main.R
. (Change your path and inputting datasets)
Our platform is i7-13700 + 24G (Mac & Win).
We recommend you set type = "pairs"
on larger datasets for faster computation.
datasets | alpha | beta | delta | eta | preprocessing |
---|---|---|---|---|---|
Prok |
1 | 1~403 | 2 | 1 | normalize |
Webkb |
1 | 3~340 | 13~15 | 1 | 0-1 |
IS |
1 | 241, 259 | 2~3 | 1 | normalize |
Caltech07 |
1 | 277 | 4 | 1 | 0-1 |
3sources |
1 | 1 | 9~20 | 1 | 0-1 |
Reuters-1500 |
1 | 29 | 3 | 1 | 0-1 |
Reuters-18758 |
1.25 | 58 | 2 | 1 | normalize |
Remark:
If methods do not output credal partition
, please change if_credal_id
.
If you find MvWECM useful in your research, please consider citing:
BibTeX
@article{zhou2025,
title = {MvWECM: Multi-View Weighted Evidential C-Means Clustering},
author = {Kuang Zhou and Yuchen Zhu and Mei Guo and Ming Jiang},
journal = {Pattern Recognition},
volume = {159},
pages = {111108},
year = {2024},
issn = {0031-3203},
publisher = {Elsevier}
}