Skip to content
/ MvWECM Public

"MvWECM: Multi-view Weighted Evidential C-Means clustering", Pattern Recognition, 2025

Notifications You must be signed in to change notification settings

H1nkik/MvWECM

Repository files navigation

MvWECM: Multi-view Weighted Evidential C-Means clustering

Static Badge Static Badge Static Badge

Preparation

Dependency

R == 4.4.1

(Rstudio will prompt you to install the missing packages.)

  • aricode

  • R.utils

  • R.matlab

  • evclust (optional)

Data

INPUT: views x n x d list

Datasets can be found at Link1, Link2 and Link3.

Usage

Just main.R. (Change your path and inputting datasets)

Parameters

Our platform is i7-13700 + 24G (Mac & Win). We recommend you set type = "pairs" on larger datasets for faster computation.

datasets alpha beta delta eta preprocessing
Prok 1 1~403 2 1 normalize
Webkb 1 3~340 13~15 1 0-1
IS 1 241, 259 2~3 1 normalize
Caltech07 1 277 4 1 0-1
3sources 1 1 9~20 1 0-1
Reuters-1500 1 29 3 1 0-1
Reuters-18758 1.25 58 2 1 normalize

Remark:

If methods do not output credal partition, please change if_credal_id.

Citation

If you find MvWECM useful in your research, please consider citing:

BibTeX

@article{zhou2025,
  title        = {MvWECM: Multi-View Weighted Evidential C-Means Clustering},
  author       = {Kuang Zhou and Yuchen Zhu and Mei Guo and Ming Jiang},
  journal      = {Pattern Recognition},
  volume       = {159},
  pages        = {111108},
  year         = {2024},
  issn         = {0031-3203},
  publisher    = {Elsevier}
}

About

"MvWECM: Multi-view Weighted Evidential C-Means clustering", Pattern Recognition, 2025

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages