-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
5 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
#set text(lang:"de") | ||
Diese Arbeit versucht zwei Indikatoren für die Analyse des öffentlichen Nahverkehrs zu erstellen. Die Indikatoren beruhen dabei auf Ideen aus der Literatur und auf einer Phase explorativer Datenanalyse basierend auf offenen, öffentlich zugänglichen Daten. Die Indikatoren wurden dann anhand einer Fallstudie erprobt. Für die Fallstudie wurde Heidelberg ausgewählt, da zur Auswertung nötigs, lokales Wissen bei der Autor\*in vorhanden waren. Die Indikatoren basieren auf einer interpretation von Erreichbarkeit basierend auf Wegezeiten, einer inversen Closeness-Zentralität. Die Differenz in günstigen und ungünstigen Abfahrtszeiten wurde verwendet, um den Bedarf an Wegeplanung zu operationalisieren. Für die Analyse wurde ein sechseckiges Gitter mit `h3` über Heidelberg gelegt, und mit `r5py` bi-modale Wegezeiten zwischen den einzelnen Zellen berechnet. Populationsdaten wurden verwendet um Zellen zu filtern. In der Literatur fand sich eine Lücke, dass Tagesgänge und zeitliche Änderungen in der Konnektivität selten betrachtet werden. Daher wurden beide Indikatoren für einen Modelltag stündlich berechnet. Der Wegezeiten-Indikator weist erwartbare Muster aus anderen Wegezeiten-Datensätzen auf, muss aber für eine tiefergehende Analyses mit besseren Modell-Wegen unterfüttert werden. Die zeitliche Variation zeigt aber bereits, dass nicht alle Bereiche einer Stadt im Laufe des Tages ähnlich gut angebunden sind, und dass Transportinfrastruktur zu Randzeiten auch areale die sonst weniger gut angebunden sind, in Randzeiten besser anbinden kann als ein Stadtzentrum. Der Planungs-Indikator war aufgrund begrenzter Routenfindungsoptionen schwer zu operationalisieren. Beide Indikatoren aber brauchen aber Verbesserungen oder zusätzliche Indikatoren um ein komplexes öffentliches Nahverkehrsnetz adequat zu beschreiben. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
This thesis tries to establish two indicators for public transit analysis. These indicators are based in a thorough reading of the literature as well as an explorative data analysis phase based on openly available data. These indicators were tested on a case study, for which Heidelberg, Germany was selected due to the familiarity and local knowledge of the author. These indicators are based on a conceptualisation of reach based on grid cells and an approximation of an inverse closeness centrality. A difference in favourable and unfavourable departure times was used to establish an indicator for the need to plan. For the purpose of analysis a `h3` hexagonal grid was laid over the study area, and bi-modal travel times were calculated between each cell pairing with `r5py`. Population data was used to filter cells. A literature gap was identified in the daily variation of travel time analysis, so for each of the two indicators they were computed for every hour of the day, covering a full 24 hours. The travel time indicator displays expected features of a travel time dataset, but lacks more informed choices of itinerary scenarious for a deeper analysis. The temporal variation however suggests that not all areas of a city are necessarily served equally well during the day, and specific features of transit infrastructure can even disadvantage otherwise central cells in off peak travel. The planning indicator, unfortunately, turned out to be hard to operationalise correctly, based on limited routing options. Both indicators need further work in fine tuning and potentially the set of indicators needs to grow to sufficiently describe a public transit system in all its complexity. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters