Skip to content
/ S3Net Public

Open-source codes of CVEO recent work "S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Binocular Imagery" on IGARSS 2024 Symposium.

Notifications You must be signed in to change notification settings

CVEO/S3Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

S3Net

English | 简体中文

Open-source codes of CVEO recent work "S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Binocular Imagery" on IGARSS 2024 Symposium.

Model Overview

Framework

model

Results

Results of Stereo Matching on the US3D Test Set

cls disp

Results of Semantic Segmentation on the US3D Test Set

cls cls

Usage

Installation

git clone https://github.com/CVEO/S3Net.git
cd S3Net
conda env create -f environment.yml
conda activate s3net

Datasets

The dataset used in our experiment is the track-2 dataset of US3D in 2019 Data Fusion Contest

Pretrained Weights

Baidu Disk : 1111

Google Drive

Training Launch Methods

1. Single-Node Single-GPU Training

python main.py

2. Single-Node Multi-GPU Training

torchrun --nproc_per_node=N main.py

3. Multi-Node Multi-GPU Training

Launch Commands

On the master node:

torchrun --nproc_per_node=4 --nnodes=N --node_rank=0 --master_addr=MASTER_IP --master_port=PORT main.py

On other nodes:

torchrun --nproc_per_node=4 --nnodes=N --node_rank=R --master_addr=MASTER_IP --master_port=PORT main.py

Inference Launch Methods

Use evaluation.py for model inference:

python test.py

File Directory Description

S3Net 
├── example
│   ├── cls.png
│   ├── disp.png
│   ├── model.png
│   ├── table_cls.png
│   └── table_disp.png
├── models
│   └── model.py
├── README-zh_CN.md
├── README.md
├── environment.yml
├── utils.py
├── train.py
├── test.py
├── main.py
└── data.py

Latest Work

If you are interested in our latest work, please check out our new project TriGeoNet!

License

Code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.

Cite this work

If you find S3Net useful in your research, please consider giving a star ⭐ and citing:

@inproceedings{yang2024s,
  title={S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Epipolar Imagery},
  author={Yang, Qingyuan and Chen, Guanzhou and Tan, Xiaoliang and Wang, Tong and Wang, Jiaqi and Zhang, Xiaodong},
  booktitle={IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium},
  pages={8737--8740},
  year={2024},
  organization={IEEE}
}

or cite the old version S2Net:

@article{liao2023s,
  title={S2Net: A Multitask Learning Network for Semantic Stereo of Satellite Image Pairs},
  author={Liao, Puyun and Zhang, Xiaodong and Chen, Guanzhou and Wang, Tong and Li, Xianwei and Yang, Haobo and Zhou, Wenlin and He, Chanjuan and Wang, Qing},
  journal={IEEE Transactions on Geoscience and Remote Sensing},
  volume={62},
  pages={1--13},
  year={2023},
  publisher={IEEE}
}

About

Open-source codes of CVEO recent work "S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Binocular Imagery" on IGARSS 2024 Symposium.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages