English | 简体中文
Open-source codes of CVEO recent work "S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Binocular Imagery" on IGARSS 2024 Symposium.
git clone https://github.com/CVEO/S3Net.git
cd S3Net
conda env create -f environment.yml
conda activate s3net
The dataset used in our experiment is the track-2 dataset of US3D in 2019 Data Fusion Contest
Baidu Disk : 1111
python main.py
torchrun --nproc_per_node=N main.py
On the master node:
torchrun --nproc_per_node=4 --nnodes=N --node_rank=0 --master_addr=MASTER_IP --master_port=PORT main.py
On other nodes:
torchrun --nproc_per_node=4 --nnodes=N --node_rank=R --master_addr=MASTER_IP --master_port=PORT main.py
Use evaluation.py for model inference:
python test.py
S3Net
├── example
│ ├── cls.png
│ ├── disp.png
│ ├── model.png
│ ├── table_cls.png
│ └── table_disp.png
├── models
│ └── model.py
├── README-zh_CN.md
├── README.md
├── environment.yml
├── utils.py
├── train.py
├── test.py
├── main.py
└── data.py
If you are interested in our latest work, please check out our new project TriGeoNet!
Code is released for non-commercial and research purposes only. For commercial purposes, please contact the authors.
If you find S3Net useful in your research, please consider giving a star ⭐ and citing:
@inproceedings{yang2024s,
title={S3Net: Innovating Stereo Matching and Semantic Segmentation with a Single-Branch Semantic Stereo Network in Satellite Epipolar Imagery},
author={Yang, Qingyuan and Chen, Guanzhou and Tan, Xiaoliang and Wang, Tong and Wang, Jiaqi and Zhang, Xiaodong},
booktitle={IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium},
pages={8737--8740},
year={2024},
organization={IEEE}
}
or cite the old version S2Net:
@article{liao2023s,
title={S2Net: A Multitask Learning Network for Semantic Stereo of Satellite Image Pairs},
author={Liao, Puyun and Zhang, Xiaodong and Chen, Guanzhou and Wang, Tong and Li, Xianwei and Yang, Haobo and Zhou, Wenlin and He, Chanjuan and Wang, Qing},
journal={IEEE Transactions on Geoscience and Remote Sensing},
volume={62},
pages={1--13},
year={2023},
publisher={IEEE}
}