-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_hbc6_supermolecular.py
160 lines (146 loc) · 5.45 KB
/
plot_hbc6_supermolecular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pprint import pprint as pp
from src import paramsTable, locald4
from qm_tools_aw import tools
import os
plt.rcParams.update(
{
"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": "Helvetica",
"mathtext.fontset": "custom",
}
)
def df_setup():
df = pd.read_pickle("./plots/basis_study.pkl")
# pp(df.columns.values.tolist())
p_2b, p_atm = paramsTable.param_lookup("sadz_supra")
print(p_2b, p_atm)
df["distance (A)"] = df.apply(
lambda r: tools.closest_intermolecular_contact_dimer(
r["Geometry"], r["monAs"], r["monBs"]
),
axis=1,
)
df["d4_supra"] = df.apply(
lambda row: locald4.compute_disp_2B_BJ_dimer_supra(
row,
p_2b,
p_atm,
),
axis=1,
)
p_2b, p_atm = paramsTable.param_lookup("sadz")
df["d4_super"] = df.apply(
lambda row: locald4.compute_disp_2B_BJ_ATM_CHG_dimer(
row,
p_2b,
p_atm,
),
axis=1,
)
# p_2b, p_atm = paramsTable.param_lookup("SAPT0_adz_3_IE_2B_TT")
# df["d4_supra_TT"] = df.apply(
# lambda row: locald4.compute_disp_2B_BJ_dimer_supra(
# row,
# p_2b,
# p_atm,
# ),
# axis=1,
# )
# p_2b, p_atm = paramsTable.param_lookup("sadz")
# df["d4_super_TT"] = df.apply(
# lambda row: locald4.compute_disp_2B_BJ_ATM_CHG_dimer(
# row,
# p_2b,
# p_atm,
# ),
# axis=1,
# )
df["SAPT0_disp"] = df.apply(lambda r: r["SAPT0_adz"][-1], axis=1)
df["E_res"] = df.apply(lambda r: r["Benchmark"] - sum(r["SAPT0_adz"][1:-1]), axis=1)
return df
def plot_all_curves(df):
print(df["DB"].unique())
df_hbc6 = df[df["DB"] == "HBC1"]
print(
df_hbc6[
["SAPT0_disp", "d4_supra", "d4_super", "E_res", "System #", "distance (A)"]
]
)
# plt usetex
for db in df["DB"].unique():
print(db)
if db.lower() == "achc":
continue
df_db = df[df["DB"] == db]
sys_numbers = df_db['System #'].unique()
if len(sys_numbers) > 0:
os.makedirs(f"./plots/disp_curves/{db}", exist_ok=True)
for i in sys_numbers:
df_sys = df_db[df_db['System #'] == i]
if len(df_sys) < 4:
continue
print(df_sys[["SAPT0_disp", "d4_supra", "d4_super", "E_res", "System #", "distance (A)"]])
df_sys = df_sys.sort_values("distance (A)")
plt.plot(df_sys["distance (A)"], df_sys["d4_supra"], label=f"-D4 Non-Super", marker="o", markersize=2.0)
plt.plot(df_sys["distance (A)"], df_sys["d4_super"], label=f"-D4 Super", marker="o", markersize=2.0)
plt.plot(df_sys["distance (A)"], df_sys["SAPT0_disp"], label=f"SAPT0 Disp.", marker="o", markersize=2.0)
plt.plot(df_sys["distance (A)"], df_sys["E_res"], label=r"E_{res}", marker="o", markersize=2.0)
plt.title(f"{db} System {i}")
plt.xlabel("Distance (A)", fontsize=16)
plt.ylabel("Energy (kcal/mol)", fontsize=16)
plt.tick_params(axis="both", which="major", labelsize=14)
plt.legend()
plt.savefig(f"./plots/disp_curves/{db}/{i}_d4_super.png")
plt.clf()
return
def plot_hbc6(df):
print(df["DB"].unique())
df_db = df[df["DB"] == "HBC1"]
print(
df_db[
["SAPT0_disp", "d4_supra", "d4_super", "E_res", "System #", "distance (A)"]
]
)
# plt usetex
sys_numbers = df_db['System #'].unique()
fig, ax = plt.subplots(2, 3, figsize=(12, 8))
ax = ax.flatten()
if len(sys_numbers) > 0:
os.makedirs(f"./plots/disp_curves/HBC1/", exist_ok=True)
for n, i in enumerate(sys_numbers):
print(n)
df_sys = df_db[df_db['System #'] == i]
print(df_sys[["SAPT0_disp", "d4_supra", "d4_super", "E_res", "System #", "distance (A)"]])
df_sys = df_sys.sort_values("distance (A)")
ax[n].plot(df_sys["distance (A)"], df_sys["E_res"], label=r"E$_{\rm res}$", marker="o", markersize=2.0, color='k')
ax[n].plot(df_sys["distance (A)"], df_sys["d4_supra"], label=f"-D4 Non-Super", marker="o", markersize=2.0)
ax[n].plot(df_sys["distance (A)"], df_sys["d4_super"], label=f"-D4 Super", marker="o", markersize=2.0)
ax[n].plot(df_sys["distance (A)"], df_sys["SAPT0_disp"], label=f"SAPT0 Disp.", marker="o", markersize=2.0)
sys_name = df_sys["System"].iloc[0]
ax[n].set_title(f"{sys_name}")
if n == 0:
ax[n].legend(loc="lower right")
if n % 3 == 0:
ax[n].set_ylabel(r"Disp. IE Energy (kcal$\cdot$mol$^{-1}$)", color="k", fontsize="14")
if n >= 3:
ax[n].set_xlabel("Distance (\AA)", fontsize=14)
ax[n].set_ylim([-17.5, 0.2])
if n ==0:
ax[n].set_ylim([-20, 0.2])
ax[n].tick_params(axis="both", which="major", labelsize=14)
# set minor ticks
ax[n].minorticks_on()
# plt.legend()
plt.savefig(f"./plots/disp_curves/HBC1/HBC1_all_d4_super.png")
plt.clf()
return
def main():
df = df_setup()
plot_hbc6(df)
return
if __name__ == "__main__":
main()