Skip to content

Commit

Permalink
更新线性代数
Browse files Browse the repository at this point in the history
  • Loading branch information
870138612 committed Nov 6, 2024
1 parent 2bdafbc commit 0497189
Showing 1 changed file with 12 additions and 12 deletions.
24 changes: 12 additions & 12 deletions src/note/higherMathematics.md
Original file line number Diff line number Diff line change
Expand Up @@ -712,14 +712,14 @@ $$
- 可分离变量型微分方程-直接可分离型

$$
\frac{y}{x}=f(x)g(y)\Rightarrow\int\frac{dy}{g(y)}=\int f(x)dx.
\frac{dy}{dx}=f(x)g(y)\Rightarrow\int\frac{dy}{g(y)}=\int f(x)dx.
$$

- 可分离变量型微分方程-换元后可分离

$$
\frac{dy}{dx}=f(ax+by+c),令u=ax+by+c,则\\
\frac{du}{dx}=a+b\frac{dy}{dx}, 代入原方程得\frac{du}{dx}=a+bf(x).
\frac{du}{dx}=a+b\frac{dy}{dx}, 代入原方程得\frac{du}{dx}=a+bf(u).
$$

- 齐次型微分方程
Expand Down Expand Up @@ -815,11 +815,11 @@ $$
特解要设为y^*=e^{\alpha x}Q_n(x)x^k,\\
其中
\begin{cases}
e^{ax}照抄\\
Q_n(x)为x的n次多项式\\
e^{ax}照抄,\\
Q_n(x)为x的n次多项式,\\
k=\begin{cases}
0,\alpha 不是特征根\\
1,\alpha是单特征根\\
0,\alpha 不是特征根,\\
1,\alpha是单特征根,\\
2,\alpha是二重特征根.
\end{cases}
\end{cases}.
Expand All @@ -830,10 +830,10 @@ $$
特解要设为y^*=e^{\alpha x}[Q_l^{(1)}(x)\cos \beta x+Q_l^{(2)}\sin \beta x]x^k,\\
其中
\begin{cases}
e^{ax}照抄\\
Q_l(x)为x的l次多项式,l=\max\{m,n\},\\
e^{ax}照抄,\\
Q_n(x)为x的n次多项式,\\
k=\begin{cases}
0,\alpha\pm \beta \text i不是特征根\\
0,\alpha\pm \beta \text i不是特征根,\\
1,\alpha\pm \beta \text i是特征根.
\end{cases}
\end{cases}.
Expand All @@ -851,17 +851,17 @@ $$

$$
若r为单实根,写\\
Ce^{rx}
Ce^{rx};
$$

$$
若r为k重实根,写\\
(C_1+C_2x+C_3x^2+...+C_kx^{k-1})e^{rx}
(C_1+C_2x+C_3x^2+...+C_kx^{k-1})e^{rx};
$$

$$
若r为单复根\alpha\pm\beta \text{i},写\\
e^{ax}(C_1\cos\beta x+ C_2 \sin\beta x)
e^{ax}(C_1\cos\beta x+ C_2 \sin\beta x);
$$

$$
Expand Down

0 comments on commit 0497189

Please sign in to comment.