-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_nvidia.py
221 lines (183 loc) · 7.59 KB
/
model_nvidia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# general
from __future__ import absolute_import
import os
import sys
import argparse
import csv
import cv2
import numpy as np
from absl import app
import tensorflow as tf
import sklearn
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Flatten, Dense, Conv2D, MaxPooling2D, Dropout, Lambda, Cropping2D
from utils import preprocess_image, augment_data, display_results
FLAGS = None
data_dir = './data'
# read data
def read_data(data_path):
samples = []
log_path = os.path.join(os.path.abspath(data_path), 'driving_log.csv')
with open(log_path) as csvfile:
reader = csv.reader(csvfile)
for line in reader:
samples.append(line)
return samples
def generator(samples, batch_size=32):
num_samples = len(samples)
while 1: # Loop forever so the generator never terminates
sklearn.utils.shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
images = []
angles = []
for batch_sample in batch_samples:
center_name = FLAGS.data_dir + '/IMG/' + batch_sample[0].split('/')[-1]
center_image = preprocess_image(cv2.imread(center_name))
center_angle = float(batch_sample[3])
# add in left and right cameras' info
left_name = FLAGS.data_dir + '/IMG/' + batch_sample[1].split('/')[-1]
left_image = preprocess_image(cv2.imread(left_name))
right_name = FLAGS.data_dir + '/IMG/' + batch_sample[2].split('/')[-1]
right_image = preprocess_image(cv2.imread(right_name))
# create adjusted steering measurements for the side camera images
correction = 0.3 # this is a parameter to tune
left_angle = center_angle + correction
right_angle = center_angle - correction
# add images and angles to data set
images.extend([center_image, left_image, right_image])
angles.extend([center_angle, left_angle, right_angle])
# data augmentation
augmented_c_image, augmented_c_angle = augment_data(center_image, center_angle)
augmented_l_image, augmented_l_angle = augment_data(left_image, left_angle)
augmented_r_image, augmented_r_angle = augment_data(right_image, right_angle)
images.extend([augmented_c_image, augmented_l_image, augmented_r_image])
angles.extend([augmented_c_angle, augmented_l_angle, augmented_r_angle])
# trim image to only see section with road
X = np.array(images)
y = np.array(angles)
X, y = sklearn.utils.shuffle(X, y)
yield X, y
def LeNet_model():
input_shape = (160, 320, 3)
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1., input_shape=input_shape))
model.add(Cropping2D(cropping=((50, 20), (0, 0))))
model.add(Conv2D(6, (5, 5), strides=(2, 2), activation='relu'))
model.add(MaxPooling2D(strides=(2, 2)))
model.add(Conv2D(16, (5, 5), activation='relu'))
model.add(MaxPooling2D(strides=(2, 2)))
model.add(Flatten())
model.add(Dense(120, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(84, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.summary()
return model
def Nvidia_model():
input_shape = (160, 320, 3)
model = Sequential()
model.add(Lambda(lambda x: x/127.5 - 1., input_shape=input_shape))
model.add(Cropping2D(cropping=((50, 20), (0, 0))))
model.add(Conv2D(24, (5, 5), strides=(2, 2), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(36, (5, 5), strides=(2, 2), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(48, (3, 3), strides=(1, 1), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(64, (3, 3), strides=(1, 1), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(64, (3, 3), strides=(1, 1), activation='elu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(100, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(50, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.summary()
return model
def zxy_model():
input_shape = (160, 320, 3)
model = Sequential()
model.add(Lambda(lambda x: x/127.5 - 1., input_shape=input_shape))
model.add(Cropping2D(cropping = ((50,20), (0,0))))
model.add(Conv2D(16, (5,5), strides=(2,2), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(32, (5,5), strides=(2,2), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(48, (3,3), strides=(2,2), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(64, (3,3), strides=(1,1), activation='elu'))
model.add(Dropout(0.5))
model.add(Conv2D(72, (3,3), strides=(1,1), activation='elu'))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(120, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(60, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(15, activation='elu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.summary()
return model
def create_model():
if FLAGS.model_type == 'nvidia':
return Nvidia_model()
else if FLAGS.model_type == 'zxy':
return zxy_model()
return LeNet_model()
def train(model, train_samples, validation_samples):
model.compile(loss='mse', optimizer='adam')
# model.fit(X_train, y_train, validation_split=0.2, shuffle=True, nb_epoch=5, verbose=1)
# compile and train the model using the generator function
train_generator = generator(train_samples, batch_size=FLAGS.batch_size)
validation_generator = generator(validation_samples, batch_size=FLAGS.batch_size)
# train
history_object = model.fit(x=train_generator,
steps_per_epoch=len(train_samples) // FLAGS.batch_size,
validation_data=validation_generator,
validation_steps=len(validation_samples) // FLAGS.batch_size,
epochs=FLAGS.epochs,
verbose=1)
model.save('model.h5')
# print the keys contained in the history object
print(history_object.history.keys())
return history_object
def main(_):
# read data
samples = read_data(FLAGS.data_dir)
# data split
train_samples, validation_samples = train_test_split(samples, test_size=0.2)
# create model
model = create_model()
# train
history_object = train(model, train_samples, validation_samples)
# display
display_results(history_object)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', type=str, default='lenet',
help='Models: lenet, nvidia')
# Directory Parameters:
parser.add_argument('--data_dir', type=str, default=data_dir,
help='Input Data Directory')
parser.add_argument('--epochs', type=int, default=5,
help='The number of epochs')
parser.add_argument('--batch_size', type=int, default=32,
help='The batch size')
FLAGS, unparsed = parser.parse_known_args()
app.run(main=main, argv=[sys.argv[0]] + unparsed)
"""
Example:
python model_nvidia.py \
--model_type nvidia \
--data_dir ./data/ \
--epochs 5 \
--batch_size 128
"""