Skip to content

Latest commit

 

History

History
485 lines (359 loc) · 9.22 KB

基础模板数据结构.md

File metadata and controls

485 lines (359 loc) · 9.22 KB

算法基础课相关代码模板

单链表 —— 模板题 AcWing 826. 单链表

 int head, e[N], ne[N], idx;

void init() {
    head = -1;
    idx = 0;
}

void insert(int a) {
    e[idx] = a, ne[idx] = head, head = idx ++ ;
}

void remove() {
    head = ne[head];
} 

双链表 —— 模板题 AcWing 827. 双链表

 int e[N], l[N], r[N], idx;

void init() {
    
    r[0] = 1, l[1] = 0;
    idx = 2;
}

void insert(int a, int x) {
    e[idx] = x;
    l[idx] = a, r[idx] = r[a];
    l[r[a]] = idx, r[a] = idx ++ ;
}

void remove(int a) {
    l[r[a]] = l[a];
    r[l[a]] = r[a];
} 

栈 —— 模板题 AcWing 828. 模拟栈

 int stk[N], tt = 0;


stk[ ++ tt] = x;


tt -- ;


stk[tt];

if (tt > 0)
{

} 

队列 —— 模板题 AcWing 829. 模拟队列

1. 普通队列:
// hh 表示队头,tt表示队尾
int q[N], hh = 0, tt = -1;

// 向队尾插入一个数
q[ ++ tt] = x;

// 从队头弹出一个数
hh ++ ;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh <= tt)
{

} 
2. 循环队列
// hh 表示队头,tt表示队尾的后一个位置
int q[N], hh = 0, tt = 0;

// 向队尾插入一个数
q[tt ++ ] = x;
if (tt == N) tt = 0;

// 从队头弹出一个数
hh ++ ;
if (hh == N) hh = 0;

// 队头的值
q[hh];

// 判断队列是否为空
if (hh != tt)
{

} 

单调栈 —— 模板题 AcWing 830. 单调栈

常见模型:找出每个数左边离它最近的比它大/小的数
int tt = 0;
for (int i = 1; i <= n; i ++ )
{
    while (tt && check(stk[tt], i)) tt -- ;
    stk[ ++ tt] = i;
} 

单调队列 —— 模板题 AcWing 154. 滑动窗口

常见模型:找出滑动窗口中的最大值/最小值
int hh = 0, tt = -1;
for (int i = 0; i < n; i ++ )
{
    while (hh <= tt && check_out(q[hh])) hh ++ ;  // 判断队头是否滑出窗口
    while (hh <= tt && check(q[tt], i)) tt -- ;
    q[ ++ tt] = i;
} 

KMP —— 模板题 AcWing 831. KMP字符串

// s[]是长文本,p[]是模式串,n是s的长度,m是p的长度
求模式串的Next数组:
for (int i = 2, j = 0; i <= m; i ++ )
{
    while (j && p[i] != p[j + 1]) j = ne[j];
    if (p[i] == p[j + 1]) j ++ ;
    ne[i] = j;
}

// 匹配
for (int i = 1, j = 0; i <= n; i ++ )
{
    while (j && s[i] != p[j + 1]) j = ne[j];
    if (s[i] == p[j + 1]) j ++ ;
    if (j == m)
    {
        j = ne[j];
        // 匹配成功后的逻辑
    }
} 

Trie树 —— 模板题 AcWing 835. Trie字符串统计

int son[N][26], cnt[N], idx;

void insert(char *str) {
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) son[p][u] = ++ idx;
        p = son[p][u];
    }
    cnt[p] ++ ;
}

int query(char *str) {
    int p = 0;
    for (int i = 0; str[i]; i ++ )
    {
        int u = str[i] - 'a';
        if (!son[p][u]) return 0;
        p = son[p][u];
    }
    return cnt[p];
} 

(1)朴素并查集:

    int p[N]; 

    
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    
    for (int i = 1; i <= n; i ++ ) p[i] = i;

    
    p[find(a)] = find(b);


(2)维护size的并查集:

    int p[N], size[N];
    

    
    int find(int x) {
        if (p[x] != x) p[x] = find(p[x]);
        return p[x];
    }

    
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        size[i] = 1;
    }

    
    size[find(b)] += size[find(a)];
    p[find(a)] = find(b);


(3)维护到祖宗节点距离的并查集:

    int p[N], d[N];
    

    
    int find(int x) {
        if (p[x] != x)
        {
            int u = find(p[x]);
            d[x] += d[p[x]];
            p[x] = u;
        }
        return p[x];
    }

    
    for (int i = 1; i <= n; i ++ )
    {
        p[i] = i;
        d[i] = 0;
    }

    
    p[find(a)] = find(b);
    d[find(a)] = distance; 

 int h[N], ph[N], hp[N], size;

void heap_swap(int a, int b) {
    swap(ph[hp[a]],ph[hp[b]]);
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

void down(int u) {
    int t = u;
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        heap_swap(u, t);
        down(t);
    }
}

void up(int u) {
    while (u / 2 && h[u] < h[u / 2])
    {
        heap_swap(u, u / 2);
        u >>= 1;
    }
}

for (int i = n / 2; i; i -- ) down(i); 

一般哈希 —— 模板题 AcWing 840. 模拟散列表

(1) 拉链法
    int h[N], e[N], ne[N], idx;

    
    void insert(int x) {
        int k = (x % N + N) % N;
        e[idx] = x;
        ne[idx] = h[k];
        h[k] = idx ++ ;
    }

    
    bool find(int x) {
        int k = (x % N + N) % N;
        for (int i = h[k]; i != -1; i = ne[i])
            if (e[i] == x)
                return true;

        return false;
    }

(2) 开放寻址法
    int h[N];

    
    int find(int x) {
        int t = (x % N + N) % N;
        while (h[t] != null && h[t] != x)
        {
            t ++ ;
            if (t == N) t = 0;
        }
        return t;
    } 

字符串哈希 —— 模板题 AcWing 841. 字符串哈希

核心思想:将字符串看成P进制数,P的经验值是131或13331,取这两个值的冲突概率低
小技巧:取模的数用2^64,这样直接用unsigned long long存储,溢出的结果就是取模的结果

typedef unsigned long long ULL;
ULL h[N], p[N]; 


p[0] = 1;
for (int i = 1; i <= n; i ++ )
{
    h[i] = h[i - 1] * P + str[i];
    p[i] = p[i - 1] * P;
}

ULL get(int l, int r) {
    return h[r] - h[l - 1] * p[r - l + 1];
} 

C++ STL简介

vector, 变长数组,倍增的思想
    size()  返回元素个数
    empty()  返回是否为空
    clear()  清空
    front()/back()
    push_back()/pop_back()
    begin()/end()
    []
    支持比较运算,按字典序

pair<int, int>
    first, 第一个元素
    second, 第二个元素
    支持比较运算,以first为第一关键字,以second为第二关键字(字典序)

string,字符串
    size()/length()  返回字符串长度
    empty()
    clear()
    substr(起始下标,(子串长度))  返回子串
    c_str()  返回字符串所在字符数组的起始地址

queue, 队列
    size()
    empty()
    push()  向队尾插入一个元素
    front()  返回队头元素
    back()  返回队尾元素
    pop()  弹出队头元素

priority_queue, 优先队列,默认是大根堆
    size()
    empty()
    push()  插入一个元素
    top()  返回堆顶元素
    pop()  弹出堆顶元素
    定义成小根堆的方式:priority_queue<int, vector<int>, greater<int>> q;

stack, 栈
    size()
    empty()
    push()  向栈顶插入一个元素
    top()  返回栈顶元素
    pop()  弹出栈顶元素

deque, 双端队列
    size()
    empty()
    clear()
    front()/back()
    push_back()/pop_back()
    push_front()/pop_front()
    begin()/end()
    []

set, map, multiset, multimap, 基于平衡二叉树(红黑树),动态维护有序序列
    size()
    empty()
    clear()
    begin()/end()
    ++, -- 返回前驱和后继,时间复杂度 O(logn)

    set/multiset
        insert()  插入一个数
        find()  查找一个数
        count()  返回某一个数的个数
        erase()
            (1) 输入是一个数x,删除所有x   O(k + logn)
            (2) 输入一个迭代器,删除这个迭代器
        lower_bound()/upper_bound()
            lower_bound(x)  返回大于等于x的最小的数的迭代器
            upper_bound(x)  返回大于x的最小的数的迭代器
    map/multimap
        insert()  插入的数是一个pair
        erase()  输入的参数是pair或者迭代器
        find()
        []  注意multimap不支持此操作。 时间复杂度是 O(logn)
        lower_bound()/upper_bound()

unordered_set, unordered_map, unordered_multiset, unordered_multimap, 哈希表
    和上面类似,增删改查的时间复杂度是 O(1)
    不支持 lower_bound()/upper_bound(), 迭代器的++,--

bitset, 圧位
    bitset<10000> s;
    ~, &, |, ^
    >>, <<
    ==, !=
    []

    count()  返回有多少个1

    any()  判断是否至少有一个1
    none()  判断是否全为0

    set()  把所有位置成1
    set(k, v)  将第k位变成v
    reset()  把所有位变成0
    flip()  等价于~
    flip(k) 把第k位取反