-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexp_polla_smart.py
210 lines (164 loc) · 7.61 KB
/
exp_polla_smart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from data.dataloader import Dataset_ST
from exp.exp_basic import Exp_Basic
from models.modelsmart import POLLA_Dense
from util.tools import EarlyStopping, adjust_learning_rate, load_adj
from util.metrics import masked_mae, masked_rmse, masked_mape, metric
import numpy as np
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
import os
import time
from sklearn.metrics import mean_squared_error, mean_absolute_error
import warnings
warnings.filterwarnings('ignore')
class Exp_POLLA(Exp_Basic):
def __init__(self, args):
super(Exp_POLLA, self).__init__(args)
def _build_model(self):
model_dict = {
'polladense': POLLA_Dense,
}
supports, adjinit = self._get_adj()
if self.args.model=='polladense':
self.support = supports
model = model_dict[self.args.model](
self.args.c_in,
self.args.c_out,
self.args.seq_len,
self.args.pred_len,
self.args.d_model,
self.args.n_heads,
self.args.n_layers,
self.args.d_ff,
self.args.nodes,
adjinit,
supports,
self.args.order,
self.args.dropout,
self.args.activation,
self.device,
self.args.attn_type
)
return model.double()
def _get_data(self, flag):
args = self.args
if flag == 'test':
shuffle_flag = False
else:
shuffle_flag = True
data_set = Dataset_ST(
root_path=args.root_path,
data_path=args.data_path,
flag=flag,
seq_len=args.seq_len,
pred_len=args.pred_len
)
print(flag, len(data_set))
data_loader = DataLoader(
data_set,
batch_size=args.batch_size,
shuffle=shuffle_flag,
num_workers=args.num_workers,
drop_last=True)
return data_set, data_loader
def _get_adj(self):
sensor_ids, sensor_id_to_ind, adj_mx = load_adj(self.args.adjdata, self.args.adjtype)
supports = [torch.DoubleTensor(i).double().to(self.device) for i in adj_mx]
adjinit = None if self.args.randomadj else supports[0]
print('adjinit shape:', adjinit.shape)
return supports, adjinit
def vali(self, vali_data, vali_loader, criterion):
self.model.eval()
total_loss = []
for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(vali_loader):
batch_x = batch_x.double().to(self.device)
batch_y = batch_y.double().to(self.device)
batch_x_mark = batch_x_mark.double().to(self.device)
outputs = self.model(batch_x, batch_x_mark, support=self.support)
pred = vali_data.scaler.inverse_transform(outputs.detach().cpu().numpy().squeeze())
true = batch_y.detach().cpu().numpy().squeeze()
pred = torch.from_numpy(pred); true = torch.from_numpy(true)
loss = masked_mae(pred, true, 0.0).item()
total_loss.append(loss)
total_loss = np.average(total_loss)
return total_loss
def train(self, setting):
train_data, train_loader = self._get_data(flag = 'train')
vali_data, vali_loader = self._get_data(flag = 'val')
path = './checkpoints/'+setting
if not os.path.exists(path):
os.makedirs(path)
time_now = time.time()
train_steps = len(train_loader)
early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
model_optim = optim.Adam(self.model.parameters(), lr=self.args.learning_rate)
if self.args.loss=='huber':
criterion = nn.SmoothL1Loss().to(self.device)
else:
criterion = masked_mae
for epoch in range(self.args.train_epochs):
iter_count = 0
train_loss = []
self.model.train()
for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(train_loader):
iter_count += 1
model_optim.zero_grad()
batch_x = batch_x.double().to(self.device)
batch_y = batch_y.double().to(self.device)
batch_x_mark = batch_x_mark.double().to(self.device)
outputs = self.model(batch_x, batch_x_mark, support=self.support)
outputs = train_data.scaler.inverse_transform(outputs)
loss = criterion(outputs, batch_y)
train_loss.append(loss.item())
if (i+1) % 100==0:
print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
speed = (time.time()-time_now)/iter_count
left_time = speed*((self.args.train_epochs - epoch)*train_steps - i)
print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
iter_count = 0
time_now = time.time()
loss.backward()
model_optim.step()
train_loss = np.average(train_loss)
vali_loss = self.vali(vali_data, vali_loader, criterion)
print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f}".format(
epoch + 1, train_steps, train_loss, vali_loss))
early_stopping(vali_loss, self.model, path)
if early_stopping.early_stop:
print("Early stopping")
break
adjust_learning_rate(model_optim, epoch, self.args)
best_model_path = path+'/'+'checkpoint.pth'
self.model.load_state_dict(torch.load(best_model_path))
return self.model
def test(self, setting): # args.mode=='direct'
test_data, test_loader = self._get_data(flag='test')
self.model.eval()
preds = []
trues = []
for i, (batch_x,batch_y,batch_x_mark,batch_y_mark) in enumerate(test_loader):
batch_x = batch_x.double().to(self.device)
batch_y = batch_y.double().to(self.device)
batch_x_mark = batch_x_mark.double().to(self.device)
outputs = self.model(batch_x, batch_x_mark, support=self.support)
pred = test_data.scaler.inverse_transform(outputs.detach().cpu().numpy().squeeze())
true = batch_y.detach().cpu().numpy().squeeze()
preds.append(pred.squeeze())
trues.append(true.squeeze())
preds = np.array(preds)
trues = np.array(trues)
print('test shape:', preds.shape, trues.shape)
# result save
folder_path = './results/' + setting +'/'
if not os.path.exists(folder_path):
os.makedirs(folder_path)
preds = torch.from_numpy(preds.reshape(-1, preds.shape[-2], preds.shape[-1]))
trues = torch.from_numpy(trues.reshape(-1, trues.shape[-2], trues.shape[-1]))
mae,mape,rmse = metric(preds, trues)
print('mae:{}, mape:{}, rmse:{}'.format(mae, mape, rmse))
np.save(folder_path+'metrics.npy', np.array([mae,rmse,mape]))
np.save(folder_path+'pred.npy', preds)
np.save(folder_path+'true.npy', trues)
return