-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreaddata.py
361 lines (303 loc) · 12.6 KB
/
readdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import numpy as np
import nibabel as nib
# import tensorflow as tf
import pdb
import dipy
import csv
import os
import time
import pandas as pd
from keras.preprocessing.sequence import pad_sequences
from dipy.reconst.shore import ShoreModel
from dipy.core.gradients import gradient_table
from dipy.data import get_sphere
def vec2mtx(spd_data):
'''
input the SPD image, which is N x M x P x 1 x 6
output is the SPD_matrix image which is N x M x P x 3 x 3
'''
img_shape = spd_data.shape
N = img_shape[0]
M = img_shape[1]
P = img_shape[2]
spd_data = np.reshape(spd_data,[N*M*P,6])
mtx = np.zeros([N*M*P,3,3],dtype = np.float32)
mtx[:,1,0] = spd_data[:,1]
mtx[:,2,0] = spd_data[:,3]
mtx[:,2,1] = spd_data[:,4]
mtx = mtx + np.transpose(mtx,[0,2,1])
mtx[:,0,0] = spd_data[:,0]
mtx[:,1,1] = spd_data[:,2]
mtx[:,2,2] = spd_data[:,5]
mtx = np.reshape(mtx,[N,M,P,3,3])
return mtx
def read_fiber(path):
# print path
track_img = nib.load(path)
track_data = track_img.get_data()
Pos = []
length = int(np.max(track_data))
flag = 0
for i in range (1,length+1):
temp_pos = np.where(track_data == i)
# print temp_pos
# print flag
# pdb.set_trace()
if temp_pos[0].size == 0:
flag = flag + 1
elif temp_pos[0].size > 1 and flag:
temp_flag = flag
for i in range(min(flag+1 , temp_pos[0].size)):
temp_flag = temp_flag - 1
Pos.append([temp_pos[0][i],temp_pos[1][i],temp_pos[2][i]])
flag = temp_flag + 1
else:
Pos.append([temp_pos[0][0],temp_pos[1][0],temp_pos[2][0]])
Pos2 = []
flag2 = 0
for i in range (length,0,-1):
temp_pos = np.where(track_data == i)
# print temp_pos
# print flag2
# pdb.set_trace()
if temp_pos[0].size == 0:
flag2 = flag2 + 1
elif temp_pos[0].size > 1 and flag2:
temp_flag = flag2
for i in range(min(flag2+1 , temp_pos[0].size)):
temp_flag = temp_flag - 1
Pos2.append([temp_pos[0][i],temp_pos[1][i],temp_pos[2][i]])
flag2 = temp_flag + 1
else:
Pos2.append([temp_pos[0][0],temp_pos[1][0],temp_pos[2][0]])
Pos2.reverse()
# pdb.set_trace()
# print Pos
# print Pos2
if len(Pos) < len(Pos2):
Pos = Pos2
print len(Pos)
Pos = np.asarray(Pos,dtype = np.int32)
# pdb.set_trace()
return Pos
def prepare_data(csv_file,label_name):
Names = []
labels = []
Visit_ = []
# csv_file = 'data/ad_data/adrc-subject-list.csv'
with open(csv_file, 'rb') as f:
reader = csv.reader(f)
count = 0
for row in reader:
if count == 0:
# label_idx = row.index(label_name) # normal should use this, APOE is different
label_idx1 = 3
label_idx2 = 4
count = count + 1
continue
else:
Names.append(row[0])
labels.append(row[label_idx1] == '4' or row[label_idx2] == '4')
# labels.append(1*(row[2]=="Male"))
count = count + 1
# Labels = np.zeros([len(labels) , 2])
# for labelid in range(len(labels)):
# Labels[ labelid , labels[labelid] ] = 1
# pdb.set_trace()
spd_data_folder = "data/ad_data/data/"
spd_data_name = "/cor_DTI_SPD.nii"
dMRI_data_name = "/dMRI.nii.gz"
track_names = ["fmajor_PP.avg33_mni_bbr_track_image.nii.gz",
"fminor_PP.avg33_mni_bbr_track_image.nii.gz",
"lh.atr_PP.avg33_mni_bbr_track_image.nii.gz",
"lh.cab_PP.avg33_mni_bbr_track_image.nii.gz",
"lh.ccg_PP.avg33_mni_bbr_track_image.nii.gz",
"lh.cst_AS.avg33_mni_bbr_track_image.nii.gz",
"lh.ilf_AS.avg33_mni_bbr_track_image.nii.gz",
"lh.slfp_PP.avg33_mni_bbr_track_image.nii.gz",
"lh.slft_PP.avg33_mni_bbr_track_image.nii.gz",
"lh.unc_AS.avg33_mni_bbr_track_image.nii.gz",
"rh.atr_PP.avg33_mni_bbr_track_image.nii.gz",
"rh.cab_PP.avg33_mni_bbr_track_image.nii.gz",
"rh.ccg_PP.avg33_mni_bbr_track_image.nii.gz",
"rh.cst_AS.avg33_mni_bbr_track_image.nii.gz",
"rh.ilf_AS.avg33_mni_bbr_track_image.nii.gz",
"rh.slfp_PP.avg33_mni_bbr_track_image.nii.gz",
"rh.slft_PP.avg33_mni_bbr_track_image.nii.gz",
"rh.unc_AS.avg33_mni_bbr_track_image.nii.gz",
]
Traces = [[] for _ in range(len(track_names))]
Traces_ODF = [[] for _ in range(len(track_names))]
for pid in range(len(Names)):
name = Names[pid]
for vi in ["_v2","_v3","_v1","_v4"]:
spd_path = spd_data_folder + name + vi + spd_data_name
if os.path.isfile(spd_path):
break
if not os.path.isfile(spd_path):
print("There's something wrong in this dataset, the data is not v1/v2/v3.")
exit()
Visit_.append(vi)
spd_img = nib.load(spd_path)
spd_data = spd_img.get_data()
mtx_whole = vec2mtx(spd_data)
dMRI_path = spd_data_folder + name + vi + dMRI_data_name
dMRI_img = nib.load(dMRI_path)
dMRI_data = dMRI_img.get_data()
############### ODF
radial_order = 6
zeta = 700
lambdaN = 1e-8
lambdaL = 1e-8
bval = "./data/ad_data/Bval_vec/dti_bvals.bval"
bvec = "./data/ad_data/Bval_vec/" + name + vi + "/bvecs_eddy.rotated.bvecs"
gtab = gtab = gradient_table(bvals = bval, bvecs = bvec)
asm = ShoreModel(gtab, radial_order=radial_order,
zeta=zeta, lambdaN=lambdaN, lambdaL=lambdaL)
############### ODF
for track_id in range(len(track_names)):
track_sub_name = track_names[track_id]
# for vi in ["_v2","_v3","_v1","_v4"]: ########## \tab for the rest 3 lines
track_path = spd_data_folder + name + vi + "/" + track_sub_name
# if os.path.isfile(track_path):
# break
if os.path.isfile(track_path):
Pos = read_fiber(track_path)
# pdb.set_trace()
minx = min(Pos[:,0])
maxx = max(Pos[:,0])
miny = min(Pos[:,1])
maxy = max(Pos[:,1])
minz = min(Pos[:,2])
maxz = max(Pos[:,2])
# pdb.set_trace()
asmfit = asm.fit(dMRI_data[minx:maxx+1,miny:maxy+1,minz:maxz+1])
# pdb.set_trace()
sphere = get_sphere('symmetric724')
dMRI_odf = asmfit.odf(sphere)
# pdb.set_trace()
Traces_ODF[track_id].append( dMRI_odf[(Pos[:,0]-minx,Pos[:,1]-miny,Pos[:,2]-minz)] )
Traces[track_id].append( mtx_whole[(Pos[:,0],Pos[:,1],Pos[:,2])] )
else:
Traces[track_id].append( [] )
Traces = np.asarray(Traces)
# Traces_ODF = None
Traces_ODF = np.asarray(Traces_ODF)
Labels = np.asarray(labels)
# pdb.set_trace()
return Traces,Traces_ODF,Labels,track_names, Names , Visit_
def read_data(csv_file,label_name,random_seed = 20160924, recalculate = False ):
# pdb.set_trace()
if not os.path.isdir("./data/ad_data/processed_data/"):
os.mkdir("./data/ad_data/processed_data/")
if not os.path.isdir("./data/ad_data/processed_data/"+label_name):
os.mkdir("./data/ad_data/processed_data/"+label_name)
np.random.seed(random_seed)
if os.path.isfile("./data/ad_data/processed_data/"+label_name+"/spddata.npy") and not recalculate:
spddata = None#np.load("./data/ad_data/processed_data/"+label_name+"/spddata.npy")
odfdata = None#np.load("./data/ad_data/processed_data/"+label_name+"/odfdata.npy")
label = np.load("./data/ad_data/processed_data/"+label_name+"/label.npy")
return spddata, odfdata , label
spddata, odfdata , label , track_sub_names , Names ,Visit_ = prepare_data(csv_file,label_name)
# print (data.shape)
# print (label.shape)
Null_pos = []
maxlength = np.zeros(spddata.shape[0],dtype = np.int32)
minlength = np.ones(spddata.shape[0],dtype = np.int32)*np.inf
for personi in range(spddata.shape[1]):
for tracei in range(spddata.shape[0]):
temp_data = spddata[tracei,personi]
# pdb.set_trace()
if temp_data == []:
Null_pos.append(personi)
break
else:
if maxlength[tracei] < temp_data.shape[0]:
maxlength[tracei] = temp_data.shape[0]
if minlength[tracei] > temp_data.shape[0]:
minlength[tracei] = temp_data.shape[0]
minlength = minlength.astype ( np.int32 )
# pdb.set_trace()
for del_pos in reversed(Null_pos):
spddata = np.delete(spddata,del_pos,1)
odfdata = np.delete(odfdata,del_pos,1)
label = np.delete(label,del_pos,0)
Names.pop(del_pos)
Visit_.pop(del_pos)
num_people = spddata.shape[1]
people_shuffle = range(num_people)
np.random.shuffle(people_shuffle)
np.save("./data/ad_data/processed_data/"+label_name+"/people_shuffle.npy",people_shuffle)
# print (people_shuffle)
# pdb.set_trace()
spddata = spddata[:,people_shuffle]
odfdata = odfdata[:,people_shuffle]
label = label[people_shuffle]
newspddata = [[] for _ in range(spddata.shape[0])]
newodfdata = [[] for _ in range(odfdata.shape[0])]
for tracei in range(spddata.shape[0]):
for personi in range(spddata.shape[1]):
# print personi
temp_data = spddata[tracei,personi]
newspddata[tracei].append( pad_sequences([temp_data], maxlen=minlength[tracei], truncating='post', dtype='float32')[0] )
temp_data = odfdata[tracei,personi]
newodfdata[tracei].append( pad_sequences([temp_data], maxlen=minlength[tracei], truncating='post', dtype='float32')[0] )
spddata = np.asarray(newspddata)
odfdata = np.asarray(newodfdata)
# pdb.set_trace()
for tracei in range(spddata.shape[0]):
subdata = np.asarray(newspddata[tracei])
np.save("./data/ad_data/processed_data/"+label_name+"/spdTrack" + str(tracei) + ".npy" , subdata)
subdata = np.asarray(newodfdata[tracei])
np.save("./data/ad_data/processed_data/"+label_name+"/odfTrack" + str(tracei) + ".npy" , subdata)
# print (subdata.shape)
fileObject = open("./data/ad_data/processed_data/"+label_name+"/Track_info.txt", 'w')
fileObject.write("Track_names maxlength minlength")
fileObject.write('\n')
for tracei in range(spddata.shape[0]):
track_sub_name = track_sub_names[tracei]
fileObject.write(track_sub_name+" ")
fileObject.write(str(maxlength[tracei])+" "+str(minlength[tracei]))
fileObject.write('\n')
fileObject.close()
# print (data.shape)
# print (label.shape)
# pdb.set_trace()
np.save("./data/ad_data/processed_data/"+label_name+"/spddata.npy",spddata)
np.save("./data/ad_data/processed_data/"+label_name+"/odfdata.npy",odfdata)
# odfdata = None
np.save("./data/ad_data/processed_data/"+label_name+"/label.npy",label)
return spddata,odfdata,label
def load_length(path):
Length = []
Name = []
if not os.path.isfile(path):
print ("Run readdata first")
return None
with open(path, 'r') as f:
data = f.readlines()
for line in data:
if "#" in line or "maxlength" in line:
continue
else:
pos = line.split()[1:3]
name = line.split()[0]
Length.append(pos)
Name.append(name)
Length = np.asarray(Length,dtype = np.int32)
return Length, Name
if __name__ == '__main__':
# tic = time.time()
# prepare_data("data/ad_data/ADRC_CSF_biomarker_cutoffs_usabel.csv","lp1_csf_biomarker_group")
# print time.time() - tic
# pdb.set_trace()
# read_fiber('./data/ad_data/data/adrc00074_v2/fmajor_PP.avg33_mni_bbr_track_image.nii.gz')
tic = time.time()
# read_data("data/ad_data/ADRC_CSF_biomarker_cutoffs_test.csv","lp1_csf_biomarker_group",recalculate = True)
read_data("data/ad_data/APOE.csv","APOE",recalculate = True)
# read_data("data/ad_data/ADRC_CSF_data_batch1frombatch2.csv","pv_ttau_by_ab",recalculate = True)
# read_data("data/ad_data/ADRC_NFL.csv","NFL",recalculate = True)
print time.time() - tic
pdb.set_trace()
# print (label.shape)
# print (data.shape)