-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_feature.py
162 lines (124 loc) · 4.15 KB
/
model_feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import torch
import torch.nn as nn
from torchvision.models.vgg import *
from torchvision.models.resnet import *
from torchvision.models.mobilenet import *
from torchvision.models.resnet import __all__ as resnet_name
from torchvision.models.mobilenet import __all__ as mobilenet_name
from torchvision.models.vgg import __all__ as vgg_name
__all__ = ['ReVGG', 'ReMobileNetV2', 'ReResNet']
feature_loader = {
'vgg16': vgg16,
'resnet18': resnet18,
'resnet34': resnet34,
'resnet50': resnet50,
'resnet101': resnet101,
'resnet152': resnet152,
'mobilenet_v2': mobilenet_v2,
}
vgg_loader = {
'vgg11': vgg11,
'vgg13': vgg13,
'vgg16': vgg16,
'vgg19': vgg19,
'vgg11_bn': vgg11_bn,
'vgg13_bn': vgg13_bn,
'vgg16_bn': vgg16_bn,
'vgg19_bn': vgg19_bn,
}
resnet_loader = {
'resnet18': resnet18,
'resnet34': resnet34,
'resnet50': resnet50,
'resnet101': resnet101,
'resnet152': resnet152,
'resnext50_32x4d':resnext50_32x4d,
'resnext101_32x8d':resnext101_32x8d,
'wide_resnet50_2':wide_resnet50_2,
'wide_resnet101_2':wide_resnet101_2
}
class ReMobileNetV2(nn.Module):
def __init__(self, name='mobilenet_v2'):
super(ReMobileNetV2, self).__init__()
# only name = 'mobilenet_v2'
if name not in mobilenet_name:
raise ValueError
if name not in feature_loader.keys():
raise NotImplementedError
net = feature_loader[name.lower()](pretrained=True)
self.features = net.features
def forward(self, x):
x1 = self.features[0:2](x)
x2 = self.features[2:4](x1)
x3 = self.features[4:7](x2)
x4 = self.features[7:14](x3)
x5 = self.features[14:18](x4)
# x6 = self.features[18:](x5)
return x1, x2, x3, x4, x5
class ReResNet(nn.Module):
def __init__(self, name='resnet50'):
super(ReResNet, self).__init__()
if name not in resnet_name:
raise ValueError
if name not in feature_loader.keys():
raise NotImplementedError
net = feature_loader[name.lower()](pretrained=True)
self.conv1 = net.conv1
self.bn1 = net.bn1
self.relu = net.relu
self.maxpool = net.maxpool
self.layer1 = net.layer1
self.layer2 = net.layer2
self.layer3 = net.layer3
self.layer4 = net.layer4
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x0 = self.maxpool(x)
x1 = self.layer1(x0)
x2 = self.layer2(x1)
x3 = self.layer3(x2)
x4 = self.layer4(x3)
return x0, x1, x2, x3, x4
class ReVGG(nn.Module):
def __init__(self, name='vgg16'):
super(ReVGG, self).__init__()
if name not in vgg_name:
raise ValueError
if name not in feature_loader.keys():
raise NotImplementedError
net = feature_loader[name.lower()](pretrained=True)
self.features = net.features
def forward(self, x):
max_point = [i for m,i in zip(self.features.modules(),range(100)) if isinstance(m, nn.MaxPool2d)]
mp= max_point[0:5]
x1 = self.features[0:mp[0]](x)
x2 = self.features[mp[0]:mp[1]](x1)
x3 = self.features[mp[1]:mp[2]](x2)
x4 = self.features[mp[2]:mp[3]](x3)
x5 = self.features[mp[3]:](x4)
return x1, x2, x3, x4, x5
if __name__ == '__main__':
import PIL.Image as Img
from torchsummary import summary
from torchvision import transforms
print("test model")
img_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
img = Img.open("E:/zk/COCO_test2014_000000000063.jpg").convert('RGB')
img = img_transform(img).unsqueeze(0)
model = ReMobileNetV2()
summary(model, (3, 480, 640), batch_size=8, device="cpu")
model = resnet34(pretrained=True).cuda()
model.eval()
out = model(img.cuda())
for i in range(len(out)):
print(out[i].shape)
import matplotlib.pyplot as plt
import numpy as np
plt.imshow(out.data.cpu().numpy())
plt.show()