-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
65 lines (58 loc) · 1.72 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
# -*- coding:utf-8 -*-
"""
@author: kaifang zhang
@license: Apache License
@time: 2020/12/01
@contact: 1115291605@qq.com
"""
import numpy as np
# 1. 计算数据集(图片)的均值和方差(RGB的3个通道)
def compute_mean_var(image):
# image.shape: [image_num, w, h, c]
mean = []
var = []
for c in range(image.shape[-1]):
mean.append(np.mean(image[:, :, :, c]))
var.append(np.std(image[:, :, :, c]))
return mean, var
# 2. 归一化图片
def norm_images(image):
# image.shape: [image_num, w, h, c]
image = image.astype('float32')
mean, var = compute_mean_var(image)
image[:, :, :, 0] = (image[:, :, :, 0] - mean[0]) / var[0]
image[:, :, :, 1] = (image[:, :, :, 1] - mean[1]) / var[1]
image[:, :, :, 2] = (image[:, :, :, 2] - mean[2]) / var[2]
return image
def normalize(x, mean, std):
# x shape: [224, 224, 3]
# mean:shape为1;这里用到了广播机制。我们安装好右边对齐的原则,可以得到如下;
# mean : [1, 1, 3], std: [3] 先插入1
# mean : [224, 224, 3], std: [3] 再变为224
x = (x - mean)/std # 这1行代码等价19到21行的1行代码;
return x
# 3. 学习率调整测率200epoch
def lr_schedule_200ep(epoch):
if epoch < 60:
return 0.1
if epoch < 120:
return 0.02
if epoch < 160:
return 0.004
if epoch < 200:
return 0.0008
if epoch < 250:
return 0.0003
if epoch < 300:
return 0.0001
else:
return 0.00006
# 4. 学习率调整测率500epoch
def lr_schedule_300ep(epoch):
if epoch < 150:
return 0.1
if epoch < 225:
return 0.01
if epoch < 300:
return 0.001