Skip to content

Releases: zhang-dut/yolov5-parts

v3.1.0 - YOLOv5 in PyTorch

01 Jun 07:40
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version uses GhostNet as the backbone network, and adds CBAM(Coordinate attention) attention mechanism in v3.0.0.

Important Updates

  • Replacing the backbone network: CSPDarknet53 -> GhostNet, to make it lightweight🎉NEW
  • Add CBAM attention mechanisms🎉NEW
    • After three Concats near the Head, 17/21/25Layer.
  • Using VOC2007 dataset for training.

Specific Changes

  • Add "models/parts_yolov5s-ghostnet_cbam.yaml"🎉NEW
    • After three Concats near the Head, 17/21/25Layer in "models/parts_yolov5s-ghostnet_cbam.yaml".
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s-ghostnet_cbam🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

Notes

The modification of ECA and CA attention mechanisms is the same as CBAM.

v3.0.0 - YOLOv5 in PyTorch

25 May 14:46
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version uses GhostNet as the backbone network, and adds CA(Coordinate attention) attention mechanism in v2.0.0, placing it in 4 different positions.

Important Updates

  • Replacing the backbone network: CSPDarknet53 -> GhostNet, to make it lightweight🎉NEW
  • Add CA attention mechanisms and place them in 4 different positions🎉NEW
    • After three Concats near the Head, 17/21/25Layer.
    • After the first Concat, 13Layer.
    • Before SPPF, 9Layer.
    • Head last, 24Layer.
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/parts_yolov5s-ghostnet_ca(or ca2, ca3, ca4).yaml"🎉NEW
    • After three Concats near the Head, 17/21/25Layer in "models/parts_yolov5s-ghostnet_ca.yaml".
    • After the first Concat, 13Layer in "models/parts_yolov5s-ghostnet_ca2.yaml".
    • Before SPPF, 9Layer in "models/parts_yolov5s-ghostnet_ca3.yaml".
    • Head last, 24Layer in "models/parts_yolov5s-ghostnet_ca4.yaml".
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s-ghostnet_ca(or ca2, ca3, ca4)🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v2.3.0 - YOLOv5 in PyTorch

19 May 01:49
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5.
This version adds SE attention mechanism in v2.0.0.

Important Updates

  • Add SE attention mechanism to this network.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/common_se.py"🎉NEW
    • Add Class: SEAttention.
  • Modify "models/yolo.py"🎉NEW
    • Find parse_model function(line 303), adding SEAttention(line 322).
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_se.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v2.2.0 - YOLOv5 in PyTorch

19 May 01:46
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5.
This version adds ECA attention mechanism in v2.0.0.

Important Updates

  • Add ECA attention mechanism to this network.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/common_eca.py"🎉NEW
    • Add Class: ECAAttention.
  • Modify "models/yolo.py"🎉NEW
    • Find parse_model function(line 303), adding ECAAttention(line 322).
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_eca.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

Notes

There are errors in "models/parts_yolov5s_eca.yaml", which will be modified in subsequent versions.⚠️ERROR

  • layer 17: CoordAttention -> ECAAttention
  • layer 21: CoordAttention -> ECAAttention
  • layer 25: CoordAttention -> ECAAttention

v2.1.0 - YOLOv5 in PyTorch

19 May 01:43
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5.
This version adds CBAM attention mechanism in v2.0.0.

Important Updates

  • Add CBAM attention mechanism to this network.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/common_cbam.py"🎉NEW
    • Add Class: ChannelAttention, SpatialAttention, CBAMBlock.
  • Modify "models/yolo.py"🎉NEW
    • Find parse_model function(line 303), adding CBAMBlock(line 322).
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_cbam.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v2.0.0 - YOLOv5 in PyTorch

18 May 08:19
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version adds CA(Coordinate attention) attention mechanism in v1.0.0, placing it in 4 different positions.

Important Updates

  • Add CA attention mechanisms and place them in 4 different positions🎉NEW
    • After three Concats near the Head, 17/21/25Layer.
    • After the first Concat, 13Layer.
    • Before SPPF, 9Layer.
    • Head last, 24Layer.
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/parts_yolov5s_ca(or ca2, ca3, ca4).yaml"🎉NEW
    • After three Concats near the Head, 17/21/25Layer in "models/parts_yolov5s_ca.yaml".
    • After the first Concat, 13Layer in "models/parts_yolov5s_ca2.yaml".
    • Before SPPF, 9Layer in "models/parts_yolov5s_ca3.yaml".
    • Head last, 24Layer in "models/parts_yolov5s_ca4.yaml".
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_ca(or ca2, ca3, ca4)🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v1.3.0 - YOLOv5 in PyTorch

18 May 07:28
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version adds the GhostNet on top of v1.0.0.
For GhostNet network structure, please refer to GhostNet: More Features from Cheap Operations.

Important Updates

  • Replacing the backbone network: CSPDarknet53 -> GhostNet, to make it lightweight.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Due to the inclusion of GhostConv and C3Ghost modules required for GhostNet in YOLOv5/v7.0, there is no need to modify "models/common.py".🎉NEW
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s-ghost.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v1.2.0- YOLOv5 in PyTorch

16 May 14:58
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version adds the ShuffleNetV2 on top of v1.0.0.

Important Updates

  • Replacing the backbone network: CSPDarknet53 -> ShuffleNetV2, to make it lightweight.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/common.py"🎉NEW
    • Add modules required for ShuffleNetV2.
    • Add Class: ConvBNReLuMaxpool, ShuffleBlock.
  • Modify "models/yolo.py"🎉NEW
    • Find parse_model function(line 303), adding ConvBNReLuMaxpool, ShuffleBlock(line 322).
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_shufflenetv2.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v1.1.2 - YOLOv5 in PyTorch

16 May 12:59
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version adds the MobileNetV3 on top of v1.1.1.

Important Updates

  • Replacing the backbone network: CSPDarknet53 -> MobileNetV3-Large, to make it lightweight.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/common.py"
    • Add modules required for MobileNetV3-Large.
    • Add Class: h_sigmoid, h_swish, SELayer, conv_bn_hswish, InvertedResidual3(Different from InvertedResidual in MobileNetV2, so renamed InvertedResidual3).
  • Modify "models/yolo.py"
    • Find parse_model function(line 303), adding h_sigmoid, h_swish, SELayer, conv_bn_hswish, InvertedResidual3(line 322).
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_mobilenetv3l.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml

v1.1.1- YOLOv5 in PyTorch

16 May 09:13
2ba475e
Compare
Choose a tag to compare

The main body of this project comes from v7.0 - YOLOv5 SOTA Realtime Instance Segmentation of ultralytics/yolov5
This version adds the MobileNetV3 on top of v1.0.0.

Important Updates

  • Replacing the backbone network: CSPDarknet53 -> MobileNetV3-Small, to make it lightweight.🎉NEW
  • Using VOC2007 dataset for training.

Specific Changes

  • Modify "models/common.py"🎉NEW
    • Add modules required for MobileNetV3-Small.
    • Add Class: h_sigmoid, h_swish, SELayer, conv_bn_hswish, InvertedResidual3(Different from InvertedResidual in MobileNetV2, so renamed InvertedResidual3).
  • Modify "models/yolo.py"🎉NEW
    • Find parse_model function(line 303), adding h_sigmoid, h_swish, SELayer, conv_bn_hswish, InvertedResidual3(line 322).
  • Modify "train.py"
    • line 441: initial weights path -> weights/yolov5s.pt
    • line 442: model.yaml path -> models/parts_yolov5s_mobilenetv3s.yaml🎉NEW
    • line 443: dataset.yaml path -> data/parts_voc2007.yaml