-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathQAgent.py
368 lines (358 loc) · 15.9 KB
/
QAgent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from __future__ import division
import MalmoPython
import json
import logging
import os
import random
import sys
import time
import Tkinter as tk
import numpy as np
from math import pow
class TabQAgent:
"""Tabular one-step Q-learning agent for discrete state/action spaces."""
def __init__(self):
# initializing logging services
self.logger = logging.getLogger(__name__)
if False: # True if you want to see more information
self.logger.setLevel(logging.DEBUG)
else:
self.logger.setLevel(logging.INFO)
self.logger.handlers = []
self.logger.addHandler(logging.StreamHandler(sys.stdout))
# action library
self.pitch_id = [ 3, 4 ]
self.hotbar_id = [ 7, 8 ]
self.actions = [
"move 1",
"turn 1",
"turn -1",
"look 1", #down
"look -1", #up
"attack 1",
# "use 1",
# "slot 0",
# "slot 1"
]
#self.decompose_action = {
# "slot 0":[
# "hotbar.1 1",
# "hotbar.1 0"
# ],
# "slot 1":[
# "hotbar.2 1",
# "hotbar.2 0"
# ]
# }
# q-learning specific
self.q_table = {}
self.loc_table = {}
self.gamma = 0.90
self.learning_rate = 0.55
self.exploration="e-greedy"
self.epsilon = 1.0
self.starter_epsilon = 0.4
self.scale = 10
self.decay_rate = 0.95
self.decay_steps = 100
# gold_room specific
self.min_x = -68
self.min_y = 13
self.min_z = -52
# HTN specific
self.pitch_count = 0
self.object_in_hand = 0
self.relevant_items = [u'gold']
room = ['wall', 'stairs']
scenario = 0 # change for different scenarios
if room[scenario] == 'wall':
self.relevant_items.append(u'glass')
else:
self.relevant_items.append(u'brick')
# for evaluation
self.avg_q = 0
self.num_moves = 0
# for visualization
self.current_loc = ()
self.prev_loc = ()
self.canvas = None
self.root = None
def reScale(self, row):
"""Scales rows of RL-MDP to restrict s.t. sum of all Q-values is 50"""
max_lim = max(row)
min_lim = min(row)
# scale to 0 to 10
if max_lim != min_lim:
new_row = [((float(i)-min_lim)*10)/(max_lim-min_lim) for i in row]
else:
new_row = row
# scale s.t. sum is 50
sum_row = sum(new_row)
new_row = [float(i)*50/sum_row for i in new_row]
return new_row
def updateQTable( self, reward, current_state ):
"""Change q_table to reflect what we have learnt."""
# retrieve the old action value from the Q-table (indexed by the previous state and the previous action)
old_q = self.q_table[self.prev_s][self.prev_a]
# using Q-learning to update qtable
max_current_q = max(self.q_table[current_state])
new_q = old_q + self.learning_rate * ( reward + self.gamma * max_current_q - old_q)
# assign the new action value to the Q-table
self.q_table[self.prev_s][self.prev_a] = new_q
# normalize the values
#self.q_table[self.prev_s] = self.reScale(self.q_table[self.prev_s])
self.logger.debug("Prev: {0}, After scaling: {1}".format(new_q, self.q_table[self.prev_s][self.prev_a]))
self.loc_table[self.prev_loc] = self.q_table[self.prev_s][self.prev_a]
self.logger.debug("Max q-value at last location: "+str(self.loc_table[self.prev_loc]))
def updateQTableFromTerminatingState( self, reward ):
"""Change q_table to reflect what we have learnt, after reaching a terminal state."""
# retrieve the old action value from the Q-table (indexed by the previous state and the previous action)
old_q = self.q_table[self.prev_s][self.prev_a]
# what should the new action value be?
new_q = reward
# assign the new action value to the Q-table
self.q_table[self.prev_s][self.prev_a] = self.learning_rate * new_q
#self.q_table[self.prev_s] = self.reScale(self.q_table[self.prev_s])
self.loc_table[self.prev_loc] = self.q_table[self.prev_s][self.prev_a]
def choose_action( self, current_s):
"""Helper function for choosing next action depending on different strategies"""
"""greedy, random, e-greedy, boltzmann"""
# TODO modify greedy, random, boltzmann for MDP
if self.exploration == "greedy":
#Choose an action with the maximum expected value.
a,allQ = sess.run([q_net.predict,q_net.Q_out],feed_dict={q_net.inputs:[s],q_net.keep_per:1.0})
a = a[0]
return a
if self.exploration == "random":
#Choose an action randomly.
a = env.action_space.sample()
if self.exploration == "e-greedy":
#Choose an action by greedily (with e chance of random action) from the Q-network
if np.random.rand(1) < self.epsilon :
rand_id = np.random.randint(len(self.actions))
self.avg_q += self.q_table[current_s][rand_id]
a = rand_id
else:
self.avg_q += max(self.q_table[current_s][:])
a = np.argmax(self.q_table[current_s][:])
return a
if self.exploration == "boltzmann":
#Choose an action probabilistically, with weights relative to the Q-values.
Q_d,allQ = sess.run([q_net.Q_dist,q_net.Q_out],feed_dict={q_net.inputs:[s],q_net.Temp:e,q_net.keep_per:1.0})
a = np.random.choice(Q_d[0],p=Q_d[0])
a = np.argmax(Q_d[0] == a)
return a
def process_observation( self, observation):
"""processes current observation to form a state for MDP-RL"""
# returns 6 blocks right in front of the agent, what it is staring at, item_count and pitch status
# get yaw, and depending upon the yaw make current state out of the 9 blocks right in front
self.logger.debug(observation)
direction = {'left':90.0,'right':270,'forward':180.0,'backward':0.0}
yaw = observation.get(u'Yaw')
if yaw is None:
print "Incomplete Observation:"
print(observation)
exit(1)
if observation.has_key(u'LineOfSight'):
los = observation.get(u'LineOfSight')
block_type = los[u'type']
in_range = los[u'inRange']
else:
block_type = 'undefined'
in_range = False
# extract grid from observation
grid = observation.get(u'around9x9', 0)
if grid is None:
print "Incomplete Observation: " + observation
exit(1)
self.logger.debug(grid)
flag = 0
item_count = 0
# format "front" depending upon Yaw of the agent
if yaw == direction['left']:
self.logger.debug("%%Facing left%%")
front_idx = range(5*3+1,5*1+0,-5) + range(5*3+26, 5*1+25, -5) + range(5*3+51, 5*1+50, -5)
elif yaw == direction['right']:
self.logger.debug("%%Facing right%%")
front_idx = range(5*1+3,5*3+4,5) + range(5*1+28, 5*3+29, 5) + range(5*1+53,5*3+54,5)
elif yaw == direction['forward']:
self.logger.debug("%%Facing forward%%")
front_idx = range(6,9) + range(6+25, 9+25) + range(6+50,9+50)
else:
self.logger.debug("%%Facing backward%%")
front_idx = range(18,15,-1) + range(18+25,15+25,-1) + range(18+50,15+50,-1)
front = [grid[block_idx] for block_idx in range(len(grid)) if block_idx in front_idx]
self.logger.debug(front_idx)
self.logger.debug(front)
# check if relevant items are on the myopic horizon
for item in self.relevant_items:
if item in grid:
flag = 1
# get count for item
item_count = grid.count(item)
break
current_s = (front[0],
front[1],
front[2],
front[3],
front[4],
front[5],
front[6],
front[7],
front[8],
block_type,
in_range,
item_count,
self.pitch_count,
self.prev_a,
)
return current_s
def act(self, world_state, agent_host, current_r ):
"""take 1 action in response to the current world state"""
# make new knowledge based state for MDP
obs_text = world_state.observations[-1].text
obs = json.loads(obs_text) # most recent observation
# log information and store as current_s
self.logger.debug(obs)
current_s = self.process_observation(obs)
# setting up additional rewards based on HTN information
if current_s[-5] in self.relevant_items:
current_r += 0.75
if current_s[-3] > 0:
current_r += 0.15 * current_s[-3]
if not u'XPos' in obs or not u'ZPos' in obs:
self.logger.error("Incomplete observation received: %s" % obs_text)
return 0
current_loc = "%d:%d" % (int(obs[u'XPos']), int(obs[u'ZPos']))
if not self.q_table.has_key(current_s):
self.q_table[current_s] = self.reScale(([1] * len(self.actions)))
self.loc_table[current_loc] = 1/len(self.actions)
# update Q values
if self.prev_s is not None and self.prev_a is not None:
self.updateQTable( current_r, current_s )
self.drawQ( curr_x = int(obs[u'XPos']), curr_y = int(obs[u'ZPos']) )
# select the next action
a = self.choose_action( current_s )
if self.actions[a] == 'attack 1':
current_r += -2
self.logger.info(str(current_s[:]) + ", action: " + str( self.actions[a]))
# try to send the selected action, only update prev_s and prev_loc if this succeeds
try:
# use decomposed actions in succession for "slot 0" and "slot 1" command
if a < 7:
agent_host.sendCommand(self.actions[a])
if a == 3:
self.pitch_count = max(self.pitch_count - 1, -2)
if a == 4:
self.pitch_count = min(self.pitch_count + 1, 2)
else:
agent_host.sendCommand(self.decompose_action[self.actions[a]][0])
agent_host.sendCommand(self.decompose_action[self.actions[a]][1])
if a == 7:
self.object_in_hand = 1
if a == 8:
self.object_in_hand = 2
except RuntimeError as e:
self.logger.error("Failed to send command: %s" % e)
exit(1)
self.prev_s = current_s
self.prev_loc = current_loc
self.prev_a = a
self.num_moves += 1
return current_r
def run(self, agent_host, num_iter):
"""run the agent on the world"""
total_reward = 0
self.prev_s = None
self.prev_a = None
is_first_action = True
self.avg_q = 0
self.num_moves = 0
self.pitch_count = 0
self.epsilon = self.starter_epsilon * (pow(self.decay_rate, num_iter/self.decay_steps))
# main loop:
world_state = agent_host.getWorldState()
while world_state.is_mission_running:
current_r = 0
if is_first_action:
# start with zero initial q_value and num_moves per iteration
# wait until have received a valid observation
while True:
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
self.logger.error("Error: %s" % error.text)
for reward in world_state.rewards:
current_r += reward.getValue()
if world_state.is_mission_running and len(world_state.observations)>0 and not world_state.observations[-1].text=="{}":
total_reward += self.act(world_state, agent_host, current_r)
break
if not world_state.is_mission_running:
break
is_first_action = False
else:
# wait for non-zero reward
while world_state.is_mission_running and current_r == 0:
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
self.logger.error("Error: %s" % error.text)
for reward in world_state.rewards:
current_r += reward.getValue()
if current_r > 0:
self.logger.info("Reward this step:"+str(current_r))
# allow time to stabilise after action
while True:
time.sleep(0.1)
world_state = agent_host.getWorldState()
for error in world_state.errors:
self.logger.error("Error: %s" % error.text)
for reward in world_state.rewards:
current_r += reward.getValue()
if world_state.is_mission_running and len(world_state.observations)>0 and not world_state.observations[-1].text=="{}":
total_reward += self.act(world_state, agent_host, current_r)
break
if not world_state.is_mission_running:
break
# process final reward
self.logger.debug("Final reward: %d" % current_r)
total_reward += current_r
# process average q values this cycle
self.avg_q = self.avg_q / self.num_moves
# update Q values
if self.prev_s is not None and self.prev_a is not None:
self.updateQTableFromTerminatingState( current_r )
self.drawQ()
return total_reward, self.avg_q, self.num_moves
def drawQ( self, curr_x=None, curr_y=None ):
"""draws a representation of the room and updates max_a Q(s,a) for each s"""
# TODO adjust the x-y limits and change so that whole box changes color
scale = 40
world_x = 7
world_y = 16
if self.canvas is None or self.root is None:
self.root = tk.Tk()
self.root.wm_title("Q-table")
self.canvas = tk.Canvas(self.root, width=world_x*scale, height=world_y*scale, borderwidth=0, highlightthickness=0, bg="black")
self.canvas.grid()
self.root.update()
self.canvas.delete("all")
# (NSWE to match action order)
min_value = -20
max_value = 50
for x in range(world_x):
for y in range(world_y):
s = "%d:%d" % (x + self.min_x, y + self.min_z)
if not s in self.loc_table:
self.canvas.create_rectangle( x*scale, y*scale, (x+1)*scale, (y+1)*scale, outline="#000", fill="#fff")
continue
value = int(self.loc_table[s])
color = 255 * ( value - min_value ) / ( max_value - min_value ) # map value to 0-255
color = max( min( color, 255 ), 0 ) # ensure within [0,255]
color_string = '#%02x%02x%02x' % (255-color, color, 0)
self.canvas.create_rectangle( x*scale, y*scale, (x+1)*scale, (y+1)*scale, outline="#fff", fill=color_string)
if curr_x is not None and curr_y is not None:
curr_x = curr_x - self.min_x
curr_y = curr_y - self.min_z
self.canvas.create_rectangle( curr_x*scale, curr_y*scale, (curr_x+1)*scale, (curr_y+1)*scale, outline="#fff", fill="#555")
self.root.update()