-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_gain.py
243 lines (202 loc) · 10.1 KB
/
calculate_gain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
# Source code: https://github.com/zbmed-semtec/medline-preprocessing/blob/main/code/Evaluation/calculate_gain.py
# This file includes the modifications to the source code according to this project
import os, sys
import argparse
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
import math
import pandas as pd
import numpy as np
from typing import Any, List, Tuple
from numpy import ndarray
# import hyperparameter_optimization as hp
def load_cosine_sim_matrix(cosine_similarity_matrix: str) -> pd.DataFrame:
"""
Loads and return a pandas dataframe object of the cosine similarity matrix.
Parameters
----------
cosine_similarity_matrix : str
Filepath for the cosine similarity matrix of existing pairs in the TSV format.
Returns
-------
sim_matrix : pd.Dataframe
Cosine similarity matrix.
"""
sim_matrix = pd.read_csv(cosine_similarity_matrix, sep='\t')
return sim_matrix
def get_dcg_matrix(similarity_matrix: pd.DataFrame, output_file: str):
"""
Sorts the cosine similarity matrix based on the cosine similarity values (descending order) for each Reference PMID
and creates a new TSV file based on the sorted values.
Parameters
----------
similarity_matrix : pd.Dataframe
Cosine similarity matrix.
"""
# dcg_matrix = similarity_matrix.sort_values(['PMID Reference', 'Cosine Similarity'],
# ascending=[True, False], ignore_index=True)
dcg_matrix = similarity_matrix.sort_values(['PMID1', 'Cosine Similarity'],
ascending=[True, False], ignore_index=True)
dcg_matrix.index = dcg_matrix.index + 1
# dcg_matrix.to_csv("./data/doc2vec-doc/dcg_doc2vec-doc.tsv", sep='\t')
dcg_matrix.to_csv(output_file, sep='\t')
def get_identity_dcg_matrix(similarity_matrix: pd.DataFrame, output_file: str):
"""
Sorts the cosine similarity matrix based on the Relevance assessment scores (2's, 1's, 0's) for each Reference PMID
and creates a new TSV file based on the sorted values.
Parameters
----------
similarity_matrix : pd.Dataframe
Cosine similarity matrix.
"""
# idcg_matrix = similarity_matrix.sort_values(['PMID Reference', 'Relevance Assessment'],
# ascending=[True, False], ignore_index=True)
idcg_matrix = similarity_matrix.sort_values(['PMID1', 'Relevance'],
ascending=[True, False], ignore_index=True)
idcg_matrix.index = idcg_matrix.index + 1
# idcg_matrix.to_csv("./data/doc2vec-doc/idcg_doc2vec-doc.tsv", sep='\t')
idcg_matrix.to_csv(output_file, sep='\t')
def calculate_dcg_at_n(n: int, all_assessed_pmids: pd.DataFrame) -> float:
"""
Calculates the DCG@n value for each Reference PMID based on the input Assessed PMIDs.
Parameters
----------
n : int
Value of n at which DCG score is to be calculated.
all_assessed_pmids : pd.Dataframe
Dataframe of all corresponding assessed PMIDs.
Returns
-------
dcg_n : float
DCG@n value.
"""
dcg_n = 0
for i, (index, row) in enumerate(all_assessed_pmids[:n].iterrows(), start=1):
# rel = row['Relevance Assessment']
rel = row['Relevance']
value = (2**rel - 1) / math.log2(i + 1)
dcg_n += value
return round(dcg_n, 4)
def calculate_idcg_at_n(n: int, sorted_assessed_pmids: pd.DataFrame) -> float:
"""
Calculates the iDCG@n value for each Reference PMID based on the
sorted Assessed PMIDs(based on the relevance score).
Parameters
----------
n : int
Value of n at which iDCG score is to be calculated.
sorted_assessed_pmids : pd.Dataframe
Dataframe of all corresponding sorted assessed PMIDs.
Returns
-------
idcg_n : float
iDCG@n value.
"""
idcg_n = 0
for i, (index, row) in enumerate(sorted_assessed_pmids[:n].iterrows(), start=1):
# rel = row['Relevance Assessment']
rel = row['Relevance']
value = (2**rel - 1) / math.log2(i + 1)
idcg_n += value
return round(idcg_n, 4)
def fill_ndcg_scores(dcg_matrix: str, idcg_matrix: str) -> Tuple[List[Any], ndarray]:
"""
Creates and fills a numpy matrix based on the nDCG values for each Reference PMIDs.
Parameters
----------
dcg_matrix : str
Filepath for TSV file of cosine similarity values sorted in the descending order.
idcg_matrix : str
Filepath for TSV file of cosine similarity values sorted based on relevance scores.
Returns
-------
all_pmids : list
List of all Reference PMIDs.
ndcg_matrix : np.array
Numpy matrix with all nDCG scores.
"""
value_of_n = [5, 10, 15, 20, 25, 50]
dcg_matrix = pd.read_csv(dcg_matrix, sep="\t")
idcg_matrix = pd.read_csv(idcg_matrix, sep="\t")
# Get list of all Reference PMIDs
# all_pmids = sorted((dcg_matrix['PMID Reference'].unique()))
all_pmids = sorted((dcg_matrix['PMID1'].unique()))
# Creates an empty numpy matrix
ndcg_matrix = np.empty(shape=(len(all_pmids), len(value_of_n)))
for pmid_index, pmid in enumerate(all_pmids):
# all_assessed_pmids = pd.DataFrame(dcg_matrix.loc[dcg_matrix['PMID Reference'] == pmid])
# sorted_assessed_pmids = pd.DataFrame(idcg_matrix.loc[idcg_matrix['PMID Reference'] == pmid])
all_assessed_pmids = pd.DataFrame(dcg_matrix.loc[dcg_matrix['PMID1'] == pmid])
sorted_assessed_pmids = pd.DataFrame(idcg_matrix.loc[idcg_matrix['PMID1'] == pmid])
for index, n in enumerate(value_of_n):
dcg_score = calculate_dcg_at_n(n, all_assessed_pmids)
idcg_score = calculate_idcg_at_n(n, sorted_assessed_pmids)
ndcg_score = round(dcg_score / idcg_score, 4)
ndcg_matrix[pmid_index][index] = ndcg_score
return all_pmids, ndcg_matrix
def write_to_tsv(pmids: list, ndcg_matrix: np.matrix, output_file: str):
"""
Writes the nDCG matrix scores to a TSV file
Parameters
----------
pmids : list
List of all Reference PMIDs.
ndcg_matrix : np.array
Numpy matrix with all nDCG scores.
"""
ndcg_matrix = pd.DataFrame(ndcg_matrix, columns=['nDCG@5', 'nDCG@10', 'nDCG@15', 'nDCG@20', 'nDCG@25', 'nDCG@50'])
# Insert all PMIDs
ndcg_matrix.insert(0, 'PMIDs', pmids)
# Calculate and append average of each nDCG score
average_values = ['Average'] + list(ndcg_matrix[['nDCG@5', 'nDCG@10', 'nDCG@15', 'nDCG@20', 'nDCG@25', 'nDCG@50']]
.mean(axis=0).round(4))
ndcg_matrix.loc[len(ndcg_matrix.index)] = average_values
# pd.DataFrame(ndcg_matrix).to_csv("ndcg_doc2vec-doc.tsv", sep="\t")
pd.DataFrame(ndcg_matrix).to_csv(output_file, sep="\t")
def relish_run():
hp_df = hp.generate_hyperparameters(hp.params_d2v)
for index, row in hp_df.iterrows():
print ("Row: " + str(index), flush=True)
sim_matrix = load_cosine_sim_matrix("Data/RELISH/nDCG-gain/Cosine_Similarities/relish_cosine_" + str(index) + ".tsv")
print ("Cosine Similarity Matrix Loaded", flush=True)
get_dcg_matrix(sim_matrix, "Data/RELISH/nDCG-gain/DCG/relish_dcg_" + str(index) + ".tsv")
print ("DCG Matrix Created", flush=True)
get_identity_dcg_matrix(sim_matrix, "Data/RELISH/nDCG-gain/iDCG/relish_idcg_" + str(index) + ".tsv")
print ("iDCG Matrix Created", flush=True)
all_pmids, ndcg_matrix = fill_ndcg_scores("Data/RELISH/nDCG-gain/DCG/relish_dcg_" + str(index) + ".tsv",
"Data/RELISH/nDCG-gain/iDCG/relish_idcg_" + str(index) + ".tsv")
print ("nDCG Matrix Created", flush=True)
write_to_tsv(all_pmids, ndcg_matrix, "Data/RELISH/nDCG-gain/nDCG/relish_ndcg_" + str(index) + ".tsv")
print ("Matrix Saved!!", flush=True)
def trec_run():
hp_df = hp.generate_hyperparameters(hp.params_d2v)
for index, row in hp_df.iterrows():
print ("Row: " + str(index), flush=True)
sim_matrix = load_cosine_sim_matrix("Data/TREC/nDCG-gain/Cosine_Similarities/trec_repurposed_cosine_" + str(index) + ".tsv")
print ("Cosine Similarity Matrix Loaded", flush=True)
get_dcg_matrix(sim_matrix, "Data/TREC/nDCG-gain/DCG/trec_dcg_" + str(index) + ".tsv")
print ("DCG Matrix Created", flush=True)
get_identity_dcg_matrix(sim_matrix, "Data/TREC/nDCG-gain/iDCG/trec_idcg_" + str(index) + ".tsv")
print ("iDCG Matrix Created", flush=True)
all_pmids, ndcg_matrix = fill_ndcg_scores("Data/TREC/nDCG-gain/DCG/trec_dcg_" + str(index) + ".tsv",
"Data/TREC/nDCG-gain/iDCG/trec_idcg_" + str(index) + ".tsv")
print ("nDCG Matrix Created", flush=True)
write_to_tsv(all_pmids, ndcg_matrix, "Data/TREC/nDCG-gain/nDCG/trec_ndcg_" + str(index) + ".tsv")
print ("Matrix Saved!!", flush=True)
# relish_run()
# trec_run()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str,
help="Path for TREC/RELISH 4 column TSV file (with relevance and cosine similarity scores).")
parser.add_argument('-o', '--output', type=str, help="Path for generated nDCG@n matrix TSV file.")
parser.add_argument('-n', '--number', type=int, help="Number for the hyperparameter combination.")
args = parser.parse_args()
if not os.path.exists("./data/output/gain_matrices"):
os.makedirs("./data/output/gain_matrices")
similarity_matrix = load_cosine_sim_matrix(args.input)
get_dcg_matrix(similarity_matrix, f"./data/output/gain_matrices/dcg_{args.number}.tsv")
get_identity_dcg_matrix(similarity_matrix, f"./data/output/gain_matrices/idcg_{args.number}.tsv")
pmids, ndcg_matrix = fill_ndcg_scores(f"./data/output/gain_matrices/dcg_{args.number}.tsv", f"./data/output/gain_matrices/idcg_{args.number}.tsv")
write_to_tsv(pmids, ndcg_matrix, args.output)