-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
202 lines (172 loc) · 7.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import os
import time
import datetime
import torch
from src import UNet, Unetpp
from train_utils import train_one_epoch, evaluate, create_lr_scheduler
from drive_dataset import DriveDataset
import transforms as T
import yaml
from torchvision import transforms as F
from pytorch_ranger import Ranger
import re
import shutil
class EnvVarLoader(yaml.SafeLoader):
pass
class extract_dict(object):
"""
The object can be read by call instead of using dictionary
"""
def __init__(self, d):
self.__dict__ = d
class Preprocessing:
def __init__(self,
base_size = None,
crop_size = None,
hflip_prob = 0.5,
vflip_prob = 0.5,
mean = (0.485, 0.456, 0.406),
std = (0.229, 0.224, 0.225),
train = True) -> None:
if train:
assert base_size is not None and crop_size is not None
min_size :int = int(0.5 * base_size)
max_size :int = int(1.2 * base_size)
trans = [T.RandomResize(min_size, max_size)]
if hflip_prob > 0:
trans.append(T.RandomHorizontalFlip(hflip_prob))
if vflip_prob > 0:
trans.append(T.RandomVerticalFlip(vflip_prob))
trans.extend([
T.RandomCrop(crop_size),
T.ToTensor(),
T.Normalize(mean=mean, std=std),
])
self.transforms = T.Compose(trans)
else:
trans = [ T.ToTensor(), T.Normalize(mean=mean, std=std),]
self.transforms = T.Compose(trans)
def __call__(self, img, target):
return self.transforms(img, target)
def main(configs):
if torch.cuda.is_available():
# device = torch.device(f'cuda:{torch.cuda.device_count()-1}')
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
batch_size = configs.batch_size
# segmentation nun_classes + background
num_classes = configs.num_classes
# using compute_mean_std.py
mean = (0.709, 0.381, 0.224)
std = (0.127, 0.079, 0.043)
# save the weight
results_file = f"{datetime.datetime.now().strftime('%m%d%H%M%S')}_{configs.model_id}.txt"
train_dataset = DriveDataset(r"./",
train=True,
transforms=Preprocessing(base_size = 565, crop_size = 480, mean=mean, std=std, train = True))
val_dataset = DriveDataset(r"./",
train=False,
transforms=Preprocessing(base_size = 565, crop_size = 480, mean=mean, std=std, train = False))
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
num_workers=configs.num_workers,
shuffle=True,
pin_memory=True,
collate_fn=train_dataset.collate_fn)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1,
num_workers=configs.num_workers,
pin_memory=True,
collate_fn=val_dataset.collate_fn)
model = None
is_cbam = configs.is_cbam
is_aspp = configs.is_aspp
is_sqex = configs.is_sqex
lossfunc = configs.loss
UNet_base_c = configs.UNet_base_c
Unetpp_base_c = configs.Unetpp_base_c
config_saved = False
print(f'Parameters loss function: {lossfunc}, is_cbam: {is_cbam}, is_aspp: {is_aspp}, is_sqex: {is_sqex}, UNet_base_c: {UNet_base_c}, Unetpp_base_c: {Unetpp_base_c}')
if(configs.mode == "unet"):
# 32 16 8
model = UNet(in_channels=3, num_classes=num_classes, base_c=UNet_base_c, is_cbam = is_cbam, is_aspp = is_aspp, is_sqex = is_sqex).to(device)
elif(configs.mode == "unetpp"):
model = Unetpp(in_channels=3, num_classes=num_classes, base_c=Unetpp_base_c, is_cbam = is_cbam, is_aspp = is_aspp, is_sqex = is_sqex).to(device)
else:
raise ValueError(f"The variable {configs.mode} is not defined.")
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"The total number of trainable parameters are {total_params}")
params_to_optimize = [p for p in model.parameters() if p.requires_grad]
# optimizer = torch.optim.SGD(
# params_to_optimize,
# lr=configs.lr, momentum=configs.momentum, weight_decay=configs.weight_decay
# )
optimizer = Ranger(model.parameters(), lr=configs.lr, weight_decay=configs.weight_decay)
scaler = torch.cuda.amp.GradScaler() if configs.amp == 1 else None
lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), configs.epochs, warmup=True)
if configs.resume == 1:
checkpoint = torch.load(configs.resume, map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
configs.start_epoch = checkpoint['epoch'] + 1
if configs.amp == 1:
scaler.load_state_dict(checkpoint["scaler"])
best_dice = 0.
best_rvd = 100.
start_time = time.time()
for epoch in range(configs.start_epoch, configs.epochs):
mean_loss, lr = train_one_epoch(lossfunc, model, optimizer, train_loader, device, epoch, num_classes,
lr_scheduler=lr_scheduler, print_freq=configs.print_freq, scaler=scaler)
confmat, dice = evaluate(model, val_loader, device=device, num_classes=num_classes)
val_info = str(confmat)
# TODO: check whether the value is for rvd
if re.findall(r'rvd : (.*)\n', val_info):
rvd = float(re.findall(r'rvd : (.*)\n', val_info)[0])
else:
rvd = 10000
print(val_info)
print(f"rvd: {rvd}")
print(f"dice coefficient: {dice:.3f}")
# write into txt
with open(results_file, "a") as f:
# record train_loss, lr and validation dataset metrices for each epoch
train_info = f"[epoch: {epoch}]\n" \
f"train_loss: {mean_loss:.4f}\n" \
f"lr: {lr:.6f}\n" \
f"dice coefficient: {dice:.3f}\n"
f.write(train_info + val_info + "\n\n")
if configs.save_best == 1:
# if best_dice <= dice and best_rvd > abs(rvd):
if best_dice < dice:
best_dice = dice
# best_rvd = abs(rvd)
else:
continue
save_file = {"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"lr_scheduler": lr_scheduler.state_dict(),
"epoch": epoch}
if configs.amp == 1:
save_file["scaler"] = scaler.state_dict()
if configs.save_best == 1:
torch.save(save_file, "save_weights/best_model_" + configs.model_id + ".pth")
if(config_saved == False):
config_saved = True
src_path = r"/home/ning/Desktop/Aaron/Unet-DRIVE/train.config"
dst_path = r"/home/ning/Desktop/Aaron/Unet-DRIVE/configs/" + configs.model_id + ".config"
shutil.copy(src_path, dst_path)
else:
torch.save(save_file, "save_weights/model_{}.pth".format(epoch))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print("training time {}".format(total_time_str))
if __name__ == '__main__':
if not os.path.exists("./save_weights"):
os.mkdir("./save_weights")
if not os.path.exists("./configs"):
os.mkdir("./configs")
configs = yaml.load(open('train.config'), Loader=EnvVarLoader)
configs = extract_dict(configs)
main(configs = configs)